This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
cluster:164 [2017/10/24 12:29] hmeij07 |
cluster:164 [2018/09/21 11:59] (current) hmeij07 |
||
---|---|---|---|
Line 75: | Line 75: | ||
# design seems to yield one gpu much hotter than the 3 in the front of the server | # design seems to yield one gpu much hotter than the 3 in the front of the server | ||
# (air flows bottom to top in picture), so we'll probably blow that one first | # (air flows bottom to top in picture), so we'll probably blow that one first | ||
- | # (max 91C or 196F, 81C is 178F). Infrared Thermometer shows 56-60C on that gpu pointed directly at it. | + | # (max 91C or 196F, 83C is 181F). Infrared Thermometer shows 56-60C on that gpu pointed directly at it. |
index, name, temperature.gpu, | index, name, temperature.gpu, | ||
- | 0, GeForce GTX 1080 Ti, 81, 179 MiB, 10993 MiB, 44 %, 0 % | + | 0, GeForce GTX 1080 Ti, 83, 352 MiB, 10820 MiB, 55 %, 1 % |
- | 1, GeForce GTX 1080 Ti, 61, 179 MiB, 10993 MiB, 47 %, 0 % | + | 1, GeForce GTX 1080 Ti, 67, 352 MiB, 10820 MiB, 66 %, 1 % |
- | 2, GeForce GTX 1080 Ti, 65, 179 MiB, 10993 MiB, 41 %, 0 % | + | 2, GeForce GTX 1080 Ti, 66, 352 MiB, 10820 MiB, 56 %, 1 % |
- | 3, GeForce GTX 1080 Ti, 63, 179 MiB, 10993 MiB, 43 %, 0 % | + | 3, GeForce GTX 1080 Ti, 63, 352 MiB, 10820 MiB, 57 %, 1 % |
# note, from nvidia-smi --help-query-gpu | # note, from nvidia-smi --help-query-gpu | ||
" | " | ||
Core GPU temperature. in degrees C. | Core GPU temperature. in degrees C. | ||
+ | |||
+ | From vendor " | ||
+ | |||
</ | </ | ||
Surprise. The server came with 34" rails but the server itself is 36" deep. That does not fit in my racks with the power distribution running vertical in the back of the rack. Oh well. Squeezed it in the very bottom 1U of a rack just clearing power cords. :-( | Surprise. The server came with 34" rails but the server itself is 36" deep. That does not fit in my racks with the power distribution running vertical in the back of the rack. Oh well. Squeezed it in the very bottom 1U of a rack just clearing power cords. :-( | ||
- | * ''/ | + | ==== Bench ==== |
+ | |||
+ | * Amber 16. Nucleosome bench runs 4.5x faster than on a K20 | ||
+ | * Not sure it is representative of our work load | ||
+ | * Adding more MPI threads decreases performance | ||
+ | * Running across more gpus (2 or 4) decreases performance | ||
+ | * One Amber process per MPI thread per GPU is optimal | ||
+ | |||
+ | **Wow, I just realized the most important metric: Our k20 has a job throughput of 20 per unit of time. The amber128 queue will have a throughput of 4*4.5 or 18 per same unit of time. One new server matches five old ones, well purchased in 2013. From an amber only perspective.** | ||
+ | |||
+ | < | ||
+ | |||
+ | nvidia-smi -pm 0; nvidia-smi -c 0 | ||
+ | # gpu_id is done via CUDA_VISIBLE_DEVICES | ||
+ | export CUDA_VISIBLE_DEVICES=$STRING_2 | ||
+ | # on n78 | ||
+ | / | ||
+ | -n $STRING_1 $AMBERHOME/ | ||
+ | -p prmtop -c inpcrd -ref inpcrd ; grep ' | ||
+ | # on n34 | ||
+ | / | ||
+ | -np $STRING_1 | ||
+ | |||
+ | |||
+ | Nucleosome Metric ns/day, seconds/ | ||
+ | |||
+ | |||
+ | GTX on n78 | ||
+ | |||
+ | -n 1, -gpu_id 0 | ||
+ | | | ||
+ | -n 2, -gpu_id 0 | ||
+ | | | ||
+ | -n 4, -gpu_id 0 | ||
+ | | | ||
+ | -n 4, -gpu_id 01 | ||
+ | | | ||
+ | -n 8, -gpu_id 01 | ||
+ | | | ||
+ | -n 4, -gpu_id 0123 | ||
+ | | | ||
+ | -n 8, -gpu_id 0123 | ||
+ | | | ||
+ | |||
+ | |||
+ | K20 on n34 | ||
+ | |||
+ | -n 1, -gpu_id 0 | ||
+ | | | ||
+ | -n 4, -gpu_id 0 | ||
+ | | | ||
+ | -n4, -gpuid 0123 | ||
+ | | | ||
+ | |||
+ | |||
+ | |||
+ | </ | ||
+ | |||
+ | * Gromacs 5.1.4 My (Colin' | ||
+ | * Can probably be improved | ||
+ | * 4 multidirs on 4 gpus achieves sweet spot at roughly 350 ns/day | ||
+ | |||
+ | < | ||
+ | |||
+ | # about 20 mins per run | ||
+ | / | ||
+ | gmx_mpi mdrun -nsteps 600000 $STRING_2 -gpu_id $STRING_3 \ | ||
+ | -ntmpi 0 -npme 0 -s topol.tpr -ntomp 0 -pin on -nb gpu | ||
+ | |||
+ | # Gromacs seems to have a mind of it's own | ||
+ | On host n78 4 GPUs user-selected for this run. | ||
+ | Mapping of GPU IDs to the 4 PP ranks in this node: 0,1,2,3 (-n< | ||
+ | |||
+ | Metric: | ||
+ | |||
+ | -n 1, -multidir 01, -gpu_id 0 | ||
+ | Using 4 MPI processes | ||
+ | Using 8 OpenMP threads per MPI process | ||
+ | Performance: | ||
+ | |||
+ | -n2, -multidir 01 02, -gpu_id 01 | ||
+ | Using 2 MPI processes | ||
+ | Using 8 OpenMP threads per MPI process | ||
+ | Performance: | ||
+ | |||
+ | -n 4, -multidir 01 02 03 04, -gpu_id 0123 | ||
+ | Using 1 MPI process | ||
+ | Using 8 OpenMP threads | ||
+ | Performance: | ||
+ | |||
+ | n 8, -multidir 01 02 03 04 05 06 07 08, -gpu_id 00112233 | ||
+ | Using 1 MPI process | ||
+ | Using 4 OpenMP threads | ||
+ | cudaMallocHost of size 1024128 bytes failed: all CUDA-capable devices are busy or unavailable | ||
+ | Ahh, nvidia compute modes need to be -pm 0 & -c 0 for gromacs ... | ||
+ | NOTE: The GPU has >25% less load than the CPU. This imbalance causes performance loss. | ||
+ | Performance: | ||
+ | |||
+ | -n 16 (max physical cpu cores), -multidir 01 02 ... 15 16, -gpu_id 0000111122223333 | ||
+ | Using 1 MPI process | ||
+ | Using 2 OpenMP threads | ||
+ | Mapping of GPU IDs to the 16 PP ranks in this node: 0, | ||
+ | Performance: | ||
+ | |||
+ | # UPDATE Gromacs 2018, check out these new performance stats for -n 4, -gpu=4 | ||
+ | |||
+ | # K20, redone with cuda 9 | ||
+ | |||
+ | root@cottontail gpu]# egrep ' | ||
+ | 01/ | ||
+ | 01/ | ||
+ | 02/ | ||
+ | 02/ | ||
+ | 03/ | ||
+ | 03/ | ||
+ | 04/ | ||
+ | 04/ | ||
+ | |||
+ | # GTX1080 cuda 8 | ||
+ | |||
+ | [hmeij@cottontail gpu]$ egrep ' | ||
+ | 01/ | ||
+ | 01/ | ||
+ | 02/ | ||
+ | 02/ | ||
+ | 03/ | ||
+ | 03/ | ||
+ | 04/ | ||
+ | 04/ | ||
+ | |||
+ | Almost 900 ns/day for a single server. | ||
+ | |||
+ | </ | ||
+ | |||
+ | * Lammps 11Aug17 runs about 11x faster than K20 | ||
+ | * used the colloid example, not sure if that's a good example | ||
+ | * like gromacs, lots of room for improvements | ||
+ | * used the double-double binary, | ||
+ | * single-double binary might run faster? | ||
+ | |||
+ | < | ||
+ | |||
+ | nvidia-smi -pm 0; nvidia-smi -c 0 | ||
+ | # gpu_id is done via CUDA_VISIBLE_DEVICES | ||
+ | export CUDA_VISIBLE_DEVCES=$STRING_2 | ||
+ | # on n78 | ||
+ | / | ||
+ | / | ||
+ | $STRING_3 -in in.colloid > /tmp/out ; grep tau /tmp/out | ||
+ | # on n34 | ||
+ | / | ||
+ | -hostfile / | ||
+ | / | ||
+ | -suffix gpu $STRING_3 | ||
+ | |||
+ | |||
+ | |||
+ | Created 5625 atoms | ||
+ | |||
+ | -n 1, -gpu_id 0 | ||
+ | Performance: | ||
+ | -n 2, -gpu_id 01 | ||
+ | Performance: | ||
+ | -n 4, -gpu_id 0123 | ||
+ | Performance: | ||
+ | |||
+ | -n 4, -gpu_id 01, -pk gpu 2 | ||
+ | Performance: | ||
+ | -n 8, -gpu_id 01, -pk gpu 2 | ||
+ | Performance: | ||
+ | -n 6, -gpu_id 0123, -pk gpu 4 | ||
+ | Performance: | ||
+ | -n 8, -gpu_id 0123, -pk gpu 4 | ||
+ | Performance: | ||
+ | -n 16, -gpu_id 0123, -pk gpu 4 | ||
+ | Performance: | ||
+ | |||
+ | |||
+ | K20 on n34 | ||
+ | |||
+ | -n8, -gpuid 0123, -pk gpu 4 | ||
+ | Performance: | ||
+ | |||
+ | |||
+ | GTX on n78 again | ||
+ | -n 8, -gpu_id 0123, -pk gpu 4 | ||
+ | |||
+ | Created 22500 atoms | ||
+ | Performance: | ||
+ | Created 90000 atoms | ||
+ | Performance: | ||
+ | |||
+ | |||
+ | </ | ||
+ | |||
+ | ==== Scripts ==== | ||
+ | |||
+ | | ||
< | < | ||
Line 391: | Line 591: | ||
</ | </ | ||
+ | ==== PPMA Bench ==== | ||
+ | |||
+ | * Runs fastest when constrined to one gpu with 4 mpi threads | ||
+ | * Room for improvement as gpu and gpu memory are not fully utilized | ||
+ | * Adding mpi threads or more gpus reduces ns/day performance | ||
+ | * No idea if adding omp threads shows a different picture | ||
+ | * No idea how it compares to K20 gpus | ||
+ | |||
+ | < | ||
+ | |||
+ | nvidia-smi -pm 0; nvidia-smi -c 0 | ||
+ | # gpu_id is done via CUDA_VISIBLE_DEVICES | ||
+ | export CUDA_VISIBLE_DEVCES=[0, | ||
+ | |||
+ | # on n78 | ||
+ | cd / | ||
+ | rm -f / | ||
+ | time / | ||
+ | / | ||
+ | -in nvt.in -var t 310 > /dev/null 2>& | ||
+ | |||
+ | |||
+ | PMMA Benchmark Performance Metric ns/day (x nr of gpus for node output) | ||
+ | |||
+ | |||
+ | Lammps 11Aug17 on GTX1080Ti (n78) | ||
+ | |||
+ | -n 1, -gpu_id 3 | ||
+ | Performance: | ||
+ | 3, GeForce GTX 1080 Ti, 38, 219 MiB, 10953 MiB, 30 %, 1 % | ||
+ | -n 2, -gpu_id 3 | ||
+ | Performance: | ||
+ | 3, GeForce GTX 1080 Ti, 57, 358 MiB, 10814 MiB, 47 %, 3 % | ||
+ | -n 4, -gpu_id 3 | ||
+ | Performance: | ||
+ | 3, GeForce GTX 1080 Ti, 59, 690 MiB, 10482 MiB, 76 %, 4 % | ||
+ | -n 8, -gpu_id 3 | ||
+ | Performance: | ||
+ | 3, GeForce GTX 1080 Ti, 47, 1332 MiB, 9840 MiB, 90 %, 4 % | ||
+ | -n 4, -gpu_id 01 | ||
+ | Performance: | ||
+ | 0, GeForce GTX 1080 Ti, 48, 350 MiB, 10822 MiB, 50 %, 3 % | ||
+ | 1, GeForce GTX 1080 Ti, 37, 344 MiB, 10828 MiB, 49 %, 3 % | ||
+ | -n 8, -gpu_id 01 | ||
+ | Performance: | ||
+ | 0, GeForce GTX 1080 Ti, 66, 670 MiB, 10502 MiB, 77 %, 4 % | ||
+ | 1, GeForce GTX 1080 Ti, 51, 670 MiB, 10502 MiB, 81 %, 4 % | ||
+ | -n 12, -gpu_id 01 | ||
+ | Performance: | ||
+ | 0, GeForce GTX 1080 Ti, 65, 988 MiB, 10184 MiB, 82 %, 4 % | ||
+ | 1, GeForce GTX 1080 Ti, 50, 990 MiB, 10182 MiB, 85 %, 4 % | ||
+ | -n 8, -gpu_id 0123 | ||
+ | Performance: | ||
+ | 0, GeForce GTX 1080 Ti, 56, 340 MiB, 10832 MiB, 57 %, 3 % | ||
+ | 1, GeForce GTX 1080 Ti, 41, 340 MiB, 10832 MiB, 52 %, 2 % | ||
+ | 2, GeForce GTX 1080 Ti, 43, 340 MiB, 10832 MiB, 57 %, 3 % | ||
+ | 3, GeForce GTX 1080 Ti, 42, 340 MiB, 10832 MiB, 55 %, 2 % | ||
+ | -n 12, -gpuid 0123 | ||
+ | Performance: | ||
+ | -n 16 | ||
+ | Performance: | ||
+ | |||
+ | |||
+ | |||
+ | # on n34 | ||
+ | unable to get it to run... | ||
+ | |||
+ | K20 on n34 | ||
+ | |||
+ | -n 1, -gpu_id 0 | ||
+ | -n 4, -gpu_id 0 | ||
+ | -n 4, -gpuid 0123 | ||
+ | |||
+ | # comparison of binaries running PMMA | ||
+ | # 1 gpu 4 mpi threads each run | ||
+ | |||
+ | # lmp_mpi-double-double-with-gpu.log | ||
+ | Performance: | ||
+ | # lmp_mpi-single-double-with-gpu.log | ||
+ | Performance: | ||
+ | # lmp_mpi-single-single-with-gpu.log | ||
+ | Performance: | ||
+ | |||
+ | </ | ||
+ | |||
+ | ==== FSL ==== | ||
+ | |||
+ | **User Time Reported** from time command | ||
+ | |||
+ | * mwgpu cpu run | ||
+ | * 2013 model name : Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz | ||
+ | * All tests 45m | ||
+ | * Bft test 16m28s (bedpostx) | ||
+ | |||
+ | * amber128 cpu run | ||
+ | * 2017 model name : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz | ||
+ | * All tests 17m - 2.5x faster | ||
+ | * Bft test 3m39s - 6x faster (bedpostx) | ||
+ | |||
+ | * amber128 gpu run | ||
+ | * 2017 CUDA Device Name: GeForce GTX 1080 Ti | ||
+ | * Bft gpu test 0m1.881s (what!? from command line) - 116x faster (bedpostx_gpu) | ||
+ | * Bft gpu test 0m1.850s (what!? via scheduler) - 118x faster (bedpostx_gpu) | ||
+ | |||
+ | |||
+ | ==== FreeSurfer ==== | ||
+ | |||
+ | |||
+ | * http:// | ||
+ | * Example using sample-001.mgz | ||
+ | |||
+ | < | ||
+ | |||
+ | Node n37 (mwgpu cpu run) | ||
+ | (2013) Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz | ||
+ | recon-all -s bert finished without error | ||
+ | example 1 user 0m3.516s | ||
+ | example 2 user 893m1.761s ~15 hours | ||
+ | example 3 user ???m ~15 hours (estimated) | ||
+ | |||
+ | Node n78 (amber128 cpu run) | ||
+ | (2017) Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz | ||
+ | recon-all -s bert finished without error | ||
+ | example 1 user 0m2.315s | ||
+ | example 2 user 488m49.215s ~8 hours | ||
+ | example 3 user 478m44.622s ~8 hours | ||
+ | |||
+ | |||
+ | freeview -v \ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | -f \ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | bert/ | ||
+ | |||
+ | |||
+ | </ | ||
+ | |||
+ | Development code for the GPU http:// | ||
+ | |||
\\ | \\ | ||
**[[cluster: | **[[cluster: |