User Tools

Site Tools


cluster:181

Warning: Undefined array key -1 in /usr/share/dokuwiki/inc/html.php on line 1458

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
cluster:181 [2019/07/31 08:46]
hmeij07
cluster:181 [2019/08/13 08:15] (current)
hmeij07 [2019 GPU Models]
Line 4: Line 4:
 ===== 2019 GPU Models ===== ===== 2019 GPU Models =====
  
-We do not do AI (yet).  The pattern is mostly one job per GPU for exclusive access.  So no NVlink requirements, CPI connections sufficient.  The application list is Amber, Gromacs, Lammps and some python biosequencing packages. Our current per GPU memory footprint is 8 GB which seems sufficient.+We do not do AI (yet).  Our GPU usage pattern is mostly one job per GPU for exclusive access.  So no NVlink requirements, CPI connections sufficient.  The application list is Amber, Gromacs, Lammps and some python biosequencing packages. Our current per GPU memory footprint is 8 GB which seems sufficient.
  
-^          Quadro  ^^^^^  Tesla  ^^    ^ +^          Quadro  ^^^^^  Tesla  ^^  Turing  ^    ^ 
-^  Model  ^  RTX 2080 Ti  ^  RTX TITAN  ^  RTX 4000  ^  RTX 6000  ^  RTX 8000  ^  P100  ^  V100  ^  Notes  ^ +^  Model  ^  RTX 2080 Ti  ^  RTX TITAN  ^  RTX 4000  ^  RTX 6000  ^  RTX 8000  ^  P100  ^  V100   T4   Notes  ^ 
-|  Cores  |  4352  |  4608  |  2304  |  4608  |  4608  |  3584  |  5120  |parallel cuda| +|  Cores  |  4352  |  4608  |  2304  |  4608  |  4608  |  3584  |  5120   2560  |parallel cuda| 
-| Memory  |  11  |  24  |  8  |  24  |  46  |  12  |  32  |GB ddr6| +| Memory  |  11  |  24  |  8  |  24  |  46  |  12  |  32   16  |GB ddr6| 
-|  Watts  |  250  |  280  |  250  |  295  |  295  |  250  |  250  |    | +|  Watts  |  250  |  280  |  250  |  295  |  295  |  250  |  250   70 !     | 
-|  Tflops  |  -  |  0.5  |  -  |  0.5  |  -  |  4.7  |  7  |double fp64| +|  Tflops  |  -  |  0.5  |  -  |  0.5  |  -  |  4.7  |  7   |double fp64| 
-|  Tflops  |  13.5  |  16  |  7  |  16  |  16  |  9.3  |  14  |single fp32| +|  Tflops  |  13.5  |  16  |  7  |  16  |  16  |  9.3  |  14   8.1  |single fp32| 
-|  Avg Bench  |  197%  |  215%  |  120%  |  207%  |  219%  |  120%  |  150%  |user bench reporting+|  Avg Bench  |  197%  |  215%  |  120%  |  207%  |  219%  |  120%  |  150%   ??  |user bench| 
-|  Price  |  $1,199  |  $2,499  |  $900  |    $4,000  |  $5,500  |  $4,250  |  $9,538  |list price| +|  Price  |  $1,199  |  $2,499  |  $900  |    $4,000  |  $5,500  |  $4,250  |  $9,538   $2,200  |list price| 
-|  $/fp32  |  $89  |  $156  |  $129  |  $250  |  $344  |  $457  |  $681  |    | +|  $/fp32  |  $89  |  $156  |  $129  |  $250  |  $344  |  $457  |  $681   $272     | 
-|  Notes  |  small scale  |  medium scale  |  small scale |  medium scale  |  large scale  |  versatile but EOL |  most advanced  |    | +|  Notes  |  small scale  |  medium scale  |  small scale |  medium scale  |  large scale  |  versatile but EOL |  most advanced   supercharge     | 
-|  FP64?  |  -  |  some  |  -  |  some  |  -  |  yes  |  yes  |double fp64|+|  FP64?  |  -  |  some  |  -  |  some  |  -  |  yes  |  yes   |double precision|
  
-A lot of information comes from this web site [[https://blog.exxactcorp.com/whats-the-best-gpu-for-deep-learning-rtx-2080-ti-vs-titan-rtx-vs-rtx-8000-vs-rtx-6000/|Best GPU for deep learning]]+A lot of information comes from this web site [[https://blog.exxactcorp.com/whats-the-best-gpu-for-deep-learning-rtx-2080-ti-vs-titan-rtx-vs-rtx-8000-vs-rtx-6000/|Best GPU for deep learning]].  Deep learning (training and inference) are driving the GPU models more towards single precision (FP32) or even half precision (FP16) to speed up training. Double precision models (the P100 and V100) are still available but there is a scientific drive towards mixed precision applications (FP64/FP32 or FP32/FP16 or even integer mixes).
  
-Bench statistics (Nidia GTX 1070 is about 100% baseline) from this web site [[https://gpu.userbenchmark.com/Faq/What-is-the-effective-GPU-speed-index/82|External Link]]+Bench statistics (Nvidia GTX 1070 is about 100% baseline) from this web site [[https://gpu.userbenchmark.com/Faq/What-is-the-effective-GPU-speed-index/82|External Link]]
  
 Most GPU models come in multiple memory configurations, showing the most common footprints. Most GPU models come in multiple memory configurations, showing the most common footprints.
  
 This is a handy tool [[https://www.nvidia.com/en-us/data-center/tesla/tesla-qualified-servers-catalog/|GPU Server Catalog]] This is a handy tool [[https://www.nvidia.com/en-us/data-center/tesla/tesla-qualified-servers-catalog/|GPU Server Catalog]]
 +
 +Learn more about the T4 ... the T4 can run in mixed mode (fp32/fp16) and can deliver 65 Tflops. Other modes are INT8 at 130 Tops and INT4 260 Tops. Now at 65 Tflops mixed precision the cost dives to $34/tflop. Amazing. And the wattage is amazing too. See the next page for the fp64/fp32 mixed precision mode quandary...[[cluster:182|P100 vs RTX 6000 & T4]]
 +
 +  * [[https://www.nvidia.com/en-us/data-center/tesla-t4/|T4]]
 +  * [[https://www.nvidia.com/en-us/data-center/products/enterprise-server/|External Link]]
 +  * [[http://https://blog.inten.to/hardware-for-deep-learning-part-3-gpu-8906c1644664|FP32, FP16, INT8, INT4, Mixed Mode]]
 +      * very interesting peak performance FP32 gpu chart (RTX TITAN and RTX 6000 on top)
 +    * [[https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#framework|Training Guide for Mixed Precision]]
 +
 +From Lammps developer: "Computing forces in all single precision is a significant approximation and mostly works ok in homogeneous system, where there is a lot of error cancellation. Using half precision in any form for force computations is not advisable."
 +
 +From Gromacs web site: "GROMACS simulations are normally run in “mixed” floating-point precision, which is suited for the use of single precision in FFTW. The default FFTW package is normally in double precision."
 +
 +
 +**Keep track of these** 
 +
 +  -  does Amber run on the T4, the web site lists "Turing (SM_75) based cards require CUDA 9.2 or later." but does not list the T4 (too new?).
 +  - Gaussian g16c01 AVX enabled linux binaries - no linda "... include GPU support for NVIDIA K40, K80, //P100, and V100// boards with 12 GB of memory or higher. A version of NVIDIA drivers compatible with CUDA 8.0 or higher." We run CUDA 9.2, so ok, but OS platform 6.10 or 7.6 required? We're at 6.5 (n38-n45) or 7.5.10 (n33-n37, n78). Do not expect this to be a problem.
 +
 +
 \\ \\
 **[[cluster:0|Back]]** **[[cluster:0|Back]]**
cluster/181.1564577178.txt.gz · Last modified: 2019/07/31 08:46 by hmeij07