
Inside Platform Lava™
Version 6.1
July 2005

Comments to: doc@platform.com

mailto:jsmith@platform.com?Subject=Lava%20Documentation%20Feedback%20(Using%20Platform%20Lava)

Copyright Platform Lava Version 6.1 software for workload management

© 1994-2005, Platform Computing Corporation. All Rights Reserved.

We’d like to hear from
you

You can help us make this manual better by telling us what you think of the content,
organization, and usefulness of the information. If you find an error, or just want to make a
suggestion for improving this manual, please address your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform
reserves the right to make corrections, updates, revisions or changes to the information in this
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Trademarks ™ LAVA, ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, and the PLATFORM logo are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective owners.

This product includes software developed by the Rocks Cluster Group at the San Diego
Supercomputer Center and its contributors.

Last update July 7 2005

mailto:doc@platform.com?Subject=Lava%20Documentation%20Feedback
mailto:support@platform.com

Contents
1 Inside Your Cluster . 5

Cluster Characteristics . 6

Restarting and Reconfiguring Lava Daemons 8

Cluster Administrators . 12

Mail Notification . 13

Managing Users, Hosts, and Queues . 14

Error and Event Logging . . 23

Monitoring Your Cluster . . 25

2 Working with Resources and Resource Requirements 29

Resource Classifications . . 30

Configuring Your Own Resources . . 36

External Load Indices and ELIM . 39

Configuring Resource Requirements . 42

Resource Requirement Strings . 43

Monitoring Resources . 46

3 Configuring Job Controls . 49

Configuring Resource Usage Limits . . 50

Configuring Load Thresholds . 53

Configuring Job Control Actions . 55

Configuring Job Priority by User . 58

Configuring Pre-Execution and Post-Execution Commands 59

Configuring Job Starters for Queues . 61

Index . 63
Inside Platform Lava 3

Contents

4
 Inside Platform Lava

C H A P T E R

1
Inside Your Cluster

Contents ◆ �Cluster Characteristics� on page 6
◆ �Restarting and Reconfiguring Lava Daemons� on page 8
◆ �Cluster Administrators� on page 12
◆ �Mail Notification� on page 13
◆ �Managing Users, Hosts, and Queues� on page 14
◆ �Error and Event Logging� on page 23
◆ �Monitoring Your Cluster� on page 25
Inside Platform Lava 5

Cluster Characteristics

6

Cluster Characteristics

The Lava master host daemons
The Lava master host is a Lava server host that acts as the overall coordinator for the
cluster. All Lava daemons run on the master host. The lim on the master host is the
master LIM. The master host is installed on the front-end node (frontend-0).

master LIM LIM on the master host. The master host is installed on the front-end node.

mbatchd Master Batch Daemon running on the master host (the front-end node). Started by the
slave batch daemon, sbatchd. Responsible for the overall state of jobs in the system.
Receives job submission, and information query requests. Manages jobs held in queues.
Dispatches jobs to hosts as determined by mbschd.

mbschd Master Batch Scheduler Daemon running on the master host. Works with mbatchd.
Started by mbatchd. Makes scheduling decisions based on job requirements and
policies.

Default Lava directories
The following directories are owned by the primary Lava administrator and are readable
by all cluster users.

Four important Lava configuration files
Lava configuration is administered through several configuration files, which you use to
modify the behavior of your cluster. The four most important files you will work with
are the following files, which are installed on the master host (front-end node):
◆ LSF_CONFDIR/lsf.conf
◆ LSF_CONFDIR/lsf.cluster.lava
◆ LSF_CONFDIR/lsf.shared
◆ LSB_CONFDIR/lava/configdir/lsb.queues

These files are created on the front-end node during the Lava installation.
All the files are owned by root. The files are readable by all cluster users. You can
change ownership of all the files to the Lava administrator.

lsf.conf
The most important file in Lava. It contains the paths to the Lava configuration
directories, log directories, libraries, and other global configuration information.
A version of lsf.conf file is also installed on each compute host. It shows the location
of the log directory and conf directory on the master host (front-end node).

Directory Description Example

LSF_CONFDIR Lava configuration directory /opt/lava/conf/

LSB_CONFDIR Lava batch configuration directory /opt/lava/conf/lsbatch/

LSB_SHAREDIR Lava batch job history directory /opt/lava/work/

LSF_LOGDIR Server daemon error logs, one for
each Lava daemon

/opt/lava/log/
Inside Platform Lava

Chapter 1
Inside Your Cluster
lsf.cluster.lava
Defines the host name, model, and type of the master host (on the front-end node). It
also defines the user name of the Lava administrator.

lsf.shared
This file is like a dictionary that defines all the keywords used by the Lava cluster. You
can add your own keywords to specify the names of resources or host types.

Note that LSF_SERVERDIR is not a shared directory.

lsb.queues
Defines the Lava batch queues and their parameters for one Lava cluster.

Cluster name
The name of the cluster is lava. This name is part of the name of the
/opt/lava/conf/lsf.cluster.lava file:

Lava hosts
◆ The Lava master host is configured in the Hosts section of

LSF_CONFDIR/lsf.cluster.lava.
◆ The master host on the front-end node is dynamically configured as a Lava server

host. This is indicated by 1 in the server column of the Hosts section of
LSF_CONFDIR/lsf.cluster.lava.

◆ Host types installed in your cluster are listed in the Hosts section of
LSF_CONFDIR/lsf.cluster.lava. The master host is configured by default.
You can also add your compute hosts to this section.

Before you configure your resources, you must add your compute hosts to the
Hosts section of LSF_CONFDIR/lsf.cluster.lava.
Inside Platform Lava 7

Restarting and Reconfiguring Lava Daemons

8

Restarting and Reconfiguring Lava Daemons

Restarting the whole cluster
Lava starts automatically in your Platform Rocks cluster. If you need to restart your
cluster, you must restart both the master host (on the front-end node) and all the
compute hosts.
To change configuration on the master host, you do not need to restart the whole
cluster. You can simply restart the Lava daemons on the master host. (See
�Reconfiguring the cluster� on page 10.)

When you restart the cluster, you must restart Lava individually on pvfs-io and
compute-pvfs hosts.

To restart the cluster:
1 Log on to the master host (on the front-end node) as root:
2 Restart Lava on the master host (front-end node):

/etc/init.d/lava stop
/etc/init.d/lava start

3 Restart Lava on the compute hosts:
cluster-fork /etc/init.d/lava stop
cluster-fork /etc/init.d/lava start

4 Restart Lava on individual hosts, such as pvfs-io and compute-pvfs hosts:
ssh hostname /etc/init.d/lava stop
ssh hostname /etc/init.d/lava start

For example:
ssh compute-pvfs-0 /etc/init.d/lava stop
ssh compute-pvfs-0 /etc/init.d/lava start

Restarting the master host
If you need to restart the Lava daemons on the master host without restarting the whole
cluster, run the following commands:
1 Run badmin hshutdown to shut down the slave batch daemon (sbatchd) on

the master host. For example:
badmin hshutdown frontend-0

2 Restart mbatchd:
badmin mbdrestart

This causes mbatchd and mbschd to exit. The mbatchd cannot be restarted,
because sbatchd is shut down. All Lava services are temporarily unavailable, but
existing jobs are not affected. When mbatchd is later started by sbatchd, its
previous status is restored from the event log file, and job scheduling continues.

Reconfiguring the master host
If you have edited the configuration files, and do not need to recognize new hosts or
remove hosts, you can reload the configuration files without restarting the cluster:

badmin reconfig
Inside Platform Lava

Chapter 1
Inside Your Cluster
For more information on changing your configuration, see �Reconfiguring the cluster�
on page 10.

Controlling daemons
To control all daemons in the cluster, you must:
◆ Be logged on as root or a user listed in the /etc/lsf.sudoers file.

See the Platform Lava Man Pages for configuration details of lsf.sudoers
◆ Be able to run rsh or cluster-fork commands across all Lava hosts without

having to enter a password.
rsh must be enabled.
The shell command specified by LSF_RSH in lsf.conf is used before rsh is
tried.

The following is an overview of commands you use to control Lava daemons.

sbatchd
Restarting sbatchd on a host does not affect jobs that are running on that host.
If sbatchd is shut down, the host is not available to run new jobs. Existing jobs
running on that host continue, but the results are not sent to the user until sbatchd is
restarted.

Daemon Action Command Permissions

sbatchd Start badmin hstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Restart badmin hrestart [host_name ...|all] Must be root or the Lava
administrator for other commands.Shut down badmin hshutdown [host_name ...|all]

mbatchd
mbschd

Restart badmin mbdrestart Must be root or the Lava
administrator for these commands

Shut down 1 badmin hshutdown
2 badmin mbdrestart

Reconfigure badmin reconfig
RES Start lsadmin resstartup [host_name ...|all] Must be root or a user listed in

lsf.sudoers for the startup
command

Shut down lsadmin resshutdown [host_name ...|all] Must be the Lava administrator for
other commandsRestart lsadmin resrestart [host_name ...|all]

LIM Start lsadmin limstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Shut down lsadmin limshutdown [host_name ...|all] Must be the Lava administrator for
other commandsRestart lsadmin limrestart [host_name ...|all]

Restart all
in cluster

lsadmin reconfig

All Lava
daemons

Restart the
whole cluster

lava stop
lava start

Must be root
Inside Platform Lava 9

Restarting and Reconfiguring Lava Daemons

10
LIM and RES
Jobs running on the host are not affected by restarting the daemons.
If a daemon is not responding to network connections, lsadmin displays an error
message with the host name. In this case, you must kill and restart the daemon manually.
If RES is shut down while remote interactive tasks are running on the host, the running
tasks continue but no new tasks are accepted.

Reconfiguring the cluster
After changing Lava configuration files, you must tell Lava to reread the files to update
the configuration. The commands you can use to reconfigure a cluster are:
◆ lsadmin reconfig
◆ badmin reconfig
◆ badmin mbdrestart

To run lsadmin reconfig, you must ensure that rsh is enabled.

The reconfiguration commands you use depend on which files you change in Lava. The
following table is a quick reference.

Reconfiguring the cluster with lsadmin and badmin
1 Log on to the host as root or the Lava administrator.
2 Run lsadmin reconfig to reconfigure LIM:

lsadmin reconfig
Checking configuration files ...
No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y
Restart LIM on <compute-0-0> done
Restart LIM on <compute-0-1> done
Restart LIM on <compute-0-2> done

The lsadmin reconfig command checks for configuration errors.

After making changes to ... Use ... Which ...

hosts badmin reconfig reloads configuration files
lsb.hosts badmin reconfig reloads configuration files
lsb.modules badmin reconfig reloads configuration files
lsb.params badmin reconfig reloads configuration files
lsb.queues badmin reconfig reloads configuration files
lsf.cluster.lava lsadmin reconfig AND

badmin mbdrestart
reconfigures LIM, reloads configuration
files, and restarts mbatchd

lsf.conf lsadmin reconfig AND
badmin mbdrestart

reconfigures LIM and reloads configuration
files, and restarts mbatchd

lsf.shared lsadmin reconfig AND
badmin mbdrestart

reconfigures LIM, reloads configuration
files, and restarts mbatchd

lsf.sudoers badmin reconfig reloads configuration files
lsf.task lsadmin reconfig AND

badmin reconfig
reconfigures LIM and reloads configuration
files
Inside Platform Lava

Chapter 1
Inside Your Cluster
If no errors are found, you are asked to confirm that you want to restart lim on all
hosts, and lim is reconfigured. If fatal errors are found, reconfiguration is aborted.

3 Run badmin reconfig to reconfigure mbatchd:
badmin reconfig
Checking configuration files ...
No errors found.
Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors.
If no fatal errors are found, you are asked to confirm reconfiguration. If fatal errors
are found, reconfiguration is aborted.

Reconfiguring the cluster by restarting mbatchd
badmin mbdrestart
Checking configuration files ...
No errors found.
Do you want to restart? [y/n] y
MBD restart initiated

The badmin mbdrestart command checks for configuration errors.
If no fatal errors are found, you are asked to confirm mbatchd restart. If fatal errors
are found, the command exits without taking any action.

If the lsb.events file is large, or many jobs are running, restarting mbatchd can
take some time. In addition, mbatchd is not available to service requests while it is
restarted.
Inside Platform Lava 11

Cluster Administrators

12
Cluster Administrators
Primary cluster

administrator
Required. The first cluster administrator is specified during installation as root. You can
change the primary administrator in the lsf.cluster.lava file. The primary Lava
administrator account owns the configuration and log files. The primary administrator
has permission to perform cluster-wide operations, change configuration files,
reconfigure the cluster, and control jobs submitted by all users.

Cluster
administrators

Optional.
Cluster administrators can perform administrative operations on all jobs and queues in
the cluster. Cluster administrators have the same cluster-wide operational privileges as
the primary Lava administrator except that they do not have permission to change
configuration files.

Adding cluster administrators
1 In the ClusterAdmins section of LSF_CONFDIR/lsf.cluster.lava,

specify the list of cluster administrators following ADMINISTRATORS, separated
by spaces. The first administrator in the list is the primary Lava administrator. All
others are cluster administrators. You can specify user names and group names. For
example:
Begin ClusterAdmins
ADMINISTRATORS = lavaadmin admin1 admin2
End ClusterAdmins

2 Save your changes.
3 Run lsadmin reconfig to reconfigure LIM.
4 Run badmin mbdrestart to restart mbatchd.
Inside Platform Lava

Chapter 1
Inside Your Cluster
Mail Notification
When a batch job completes or exits, Lava by default sends a job report by electronic
mail to the submitting user account. The report includes the following information:
◆ Standard output (stdout) of the job
◆ Standard error (stderr) of the job
◆ Lava job information such as CPU, process, and memory usage
The output from stdout and stderr are merged together in the order printed, as if
the job was run interactively. The default standard input (stdin) file is the null device.
The null device on UNIX is /dev/null.

Controlling the
size of job email

Some batch jobs can create large amounts of output. To prevent large job output files
from interfering with your mail system, you can use the LSB_MAILSIZE_LIMIT
parameter in lsf.conf to limit the size of the email containing the job output
information.
By default, LSB_MAILSIZE_LIMIT is not enabled�no limit is set on size of batch job
output email.
If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is saved
to a file under JOB_SPOOL_DIR, or the default job output directory if
JOB_SPOOL_DIR is undefined. The email informs users where the job output is
located.
If the -o option of bsub is used, the size of the job output is not checked against
LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE
environment

variable

Lava sets LSB_MAILSIZE to the approximate size in KB of the email containing job
output information. LSB_MAILSIZE is not recognized by the Lava default mail
program. To prevent large job output files from interfering with your mail system, use
LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email
containing the job information.
For more information on mail notification, see the Platform Lava Man Pages for
information about the LSB_MAILSIZE environment variable and the LSB_MAILTO,
LSB_MAILSIZE_LIMIT parameters in lsf.conf, and JOB_SPOOL_DIR in
lsb.params.
Inside Platform Lava 13

Managing Users, Hosts, and Queues

14
Managing Users, Hosts, and Queues

Making your cluster available to users
To set up the Lava environment for your users, use the following two shell files:
◆ LSF_CONFDIR/cshrc.lsf (for csh, tcsh)
◆ LSF_CONFDIR/profile.lsf (for sh, ksh, or bash)
Make sure all Lava users include one of these files at the end of their own .cshrc or
.profile file, or run one of these two files before using Lava.

For csh or tcsh Add cshrc.lsf to the end of the .cshrc file for all users:
◆ Copy the cshrc.lsf file into .cshrc
OR
◆ Add a line similar to the following to the end of .cshrc:

source /opt/lava/conf/cshrc.lsf

For sh, ksh, or
bash

Add profile.lsf to the end of the .profile file for all users:
◆ Copy the profile.lsf file into .profile
OR
◆ Add a line similar to following to the end of .profile:

. /opt/lava/conf/profile.lsf

Controlling hosts
Hosts are opened and closed by root or a Lava Administrator issuing a command or
through configured dispatch windows.

Closing a host # badmin hclose compute-0-0
Close <compute-o-o> done

If the command fails, it may be because the host is unreachable through network
problems, or because the daemons on the host are not running.

Opening a host # badmin hopen compute-0-0
Open <hostB> done

Dispatch windows A dispatch window specifies one or more time periods during which a host will receive
new jobs.
1 Edit lsb.hosts.
2 Specify on or more time windows in the DISPATCH_WINDOW column. For

example:
Begin Host
HOST_NAME r1m pg ls tmp DISPATCH_WINDOW
...
hostB 3.5/4.5 15/ 12/15 0 (4:30-12:00)
...
End Host

3 Reconfigure the cluster:
a Run lsadmin reconfig to reconfigure LIM.
b Run badmin reconfig to reconfigure mbatchd.
Inside Platform Lava

Chapter 1
Inside Your Cluster
4 Run bhosts -l to display the dispatch windows.
For information on dispatch windows for queues, see �Controlling when jobs run� on
page 21.

Adding host types and host models to lsf.shared
The lsf.shared file contains a list of host type and host model names for most
operating systems. You can add to this list or customize the host type and host model
names. A host type and host model name can be any alphanumeric string up to 29
characters long.
1 Log on as the Lava administrator to any host in the cluster.
2 Edit lsf.shared:

a For a new host type, modify the HostType section:
Begin HostType
TYPENAME # Keyword
DEFAULT
LINUX86
LINUX64
End HostType

b For a new host model, modify the HostModel section:
Add the new model and its CPU speed factor relative to other models.

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
x86 (Solaris, NT, Linux): approximate values, based on SpecBench results
for Intel processors (Sparc/NT) and BogoMIPS results (Linux).
Opteron848 60.0 (x15_3604_AMDOpterontmProcessor848)
Intel_IA64 12.0 (ia64 IA64)
End HostModel

3 Save the changes to lsf.shared.
4 Run lsadmin reconfig to reconfigure LIM.
5 Run badmin reconfig to reconfigure mbatchd.

Registering service ports
Lava uses dedicated UDP and TCP ports for communication. All hosts in the cluster
must use the same port numbers to communicate with each other.
The service port numbers can be any numbers ranging from 1024 to 65535 that are not
already used by other services. To make sure that the port numbers you supply are not
already used by applications registered in your service database, check
/etc/services or use the command ypcat services.
By default, port numbers for Lava services are defined automatically in the lsf.conf
file during installation.
If you find any registration conflicts, change your service port numbers as follows:
1 Log on to any host as root.
2 Edit lsf.conf and add the following lines:
Inside Platform Lava 15

Managing Users, Hosts, and Queues

16
LSF_LIM_PORT=3879
LSF_RES_PORT=3878
LSB_MBD_PORT=3881
LSB_SBD_PORT=3882

3 Add the same entries to lsf.conf on every host.
4 Save lsf.conf.
5 Run lsadmin reconfig to reconfigure LIM.
6 Run badmin mbdrestart to restart mbatchd.
7 Restart all the daemons in the cluster.

Matching host names and addresses
Lava needs to match host names with the corresponding Internet host addresses.
Lava looks up host names and addresses the following ways:
◆ In the /etc/hosts file
◆ Sun Network Information Service/Yellow Pages (NIS or YP)
◆ Internet Domain Name Service (DNS).

DNS is also known as the Berkeley Internet Name Domain (BIND) or named,
which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.
Each host has one or more network addresses; usually one for each network to which
the host is directly connected. Each host can also have more than one name.
The first name configured for each address is called the official name.
Other names for the same host are called aliases.
Lava uses the configured host naming system on each host to look up the official host
name for any alias or host address. This means that you can use aliases as input to Lava,
but Lava always displays the official name.

Host name services
The following rules apply:
◆ If your host has an /etc/resolv.conf file, your host is using DNS for name

lookups
◆ If the command ypcat hosts prints out a list of host addresses and names, your

system is looking up names in NIS
◆ Otherwise, host names are looked up in the /etc/hosts file
The man pages for the gethostbyname function, the ypbind and named daemons,
the resolver functions, and the hosts, svc.conf, nsswitch.conf, and
resolv.conf files explain host name lookups in more detail.

Hosts with multiple addresses
Hosts that have more than one network interface usually have one Internet address for
each interface. Such hosts are called multi-homed hosts. Lava identifies hosts by name, so it
needs to match each of these addresses with a single host name.
To match each address with a host name, the host name information must be configured
so that all of the Internet addresses for a host resolve to the same name.
Inside Platform Lava

Chapter 1
Inside Your Cluster
This can be done in one of the following ways:
◆ Modify the system hosts file (/etc/hosts) and the changes will affect the whole

system
◆ Create a Lava hosts file (LSF_CONFDIR/hosts) and Lava will be the only

application that resolves the addresses to the same host

Multiple network interfaces
Some system manufacturers recommend that each network interface, and therefore,
each Internet address, be assigned a different host name. Each interface can then be
directly accessed by name. This setup is often used to make sure NFS requests go to the
nearest network interface on the file server, rather than going through a router to some
other interface. This configuration can confuse Lava, because there is no way to
determine that the two different names (or addresses) refer to the same host. Lava
provides a workaround for this problem.
All host naming systems can be configured so that host address lookups always return
the same name, while still allowing access to network interfaces by different names. Each
host has an official name and a number of aliases, which are other names for the same
host. By configuring all interfaces with the same official name but different aliases, you
can refer to each interface by a different alias name while still providing a single official
name for the host.

Configuring the Lava hosts file
If your Lava clusters include hosts that have more than one interface and are configured
with more than one official host name, you must either modify the host name
configuration, or create a private hosts file for Lava to use.
The Lava hosts file is stored in LSF_CONFDIR. The format of
LSF_CONFDIR/hosts is the same as the format of /etc/hosts.
In the Lava hosts file, duplicate the system hosts database information, except make
all entries for the host use the same official name. Configure all the other names for the
host as aliases so that people can still refer to the host by any name.

Example configurations
If your /etc/hosts file contains:
AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface

then the LSF_CONFDIR/hosts file should contain:
AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface

The following example is for a host with two interfaces, where the host does not have a
unique official name:
Address Official name Aliases
Interface on network A
AA.AA.AA.AA host-AA.domain host.domain host-AA host
Interface on network B
BB.BB.BB.BB host-BB.domain host-BB host
Inside Platform Lava 17

Managing Users, Hosts, and Queues

18
Looking up the address AA.AA.AA.AA finds the official name host-AA.domain.
Looking up address BB.BB.BB.BB finds the name host-BB.domain. No
information connects the two names, so there is no way for Lava to determine that both
names, and both addresses, refer to the same host.
To resolve this case, you must configure these addresses using a unique host name. If
you cannot make this change to the system file, you must create a Lava hosts file and
configure these addresses using a unique host name in that file.
Here is the same example, with both addresses configured for the same official name:
Address Official name Aliases
Interface on network A
AA.AA.AA.AA host.domain host-AA.domain host-AA host
Interface on network B
BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address returns host.domain as the official
name for the host. Lava (and all other applications) can determine that all the addresses
and host names refer to the same host. Individual interfaces can still be specified by
using the host-AA and host-BB aliases.
Sun�s NIS uses the /etc/hosts file on the NIS master host as input, so the format for
NIS entries is the same as for the /etc/hosts file.
Since Lava can resolve this case, you do not need to create a Lava hosts file.

DNS configuration
The configuration format is different for DNS. The same result can be produced by
configuring two address (A) records for each Internet address. Following the previous
example:
name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the
interface-specific names returns the correct address for each interface.

PTR records in DNS
Address-to-name lookups in DNS are handled using PTR records. The PTR records for
both addresses should be configured to return the official name:
address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts file local
to the Lava system, and configure entries for the multi-homed hosts only. Host names
and addresses not found in the hosts file are looked up in the standard name system
on your host.

Controlling queues
Queues are controlled by a Lava Administrator or root issuing a command or through
configured dispatch and run windows.
Inside Platform Lava

Chapter 1
Inside Your Cluster
Adding a queue 1 Log on as the Lava administrator to the front-end host.
2 Edit lsb.queues to add the new queue definition.

You can copy another queue definition from this file as a starting point; remember
to change the QUEUE_NAME of the copied queue.

3 Save the changes to lsb.queues.
4 Run badmin reconfig to reconfigure mbatchd.

Adding a queue does not affect pending or running jobs.

Removing a queue If there are jobs in the queue, move pending and running jobs to another queue, then
remove the queue. If you remove a queue that has jobs in it, the jobs are temporarily
moved to a queue named lost_and_found. Jobs in the lost_and_found queue
remain pending until the user or the Lava administrator uses the bswitch command to
switch the jobs into regular queues. Jobs in other queues are not affected.
The following examples use queues named night and idle.
1 Log on as root or the Lava administrator to any host in the cluster.
2 Close the queue to prevent any new jobs from being submitted. For example:

badmin qclose night
Queue <night> is closed

3 Move all pending and running jobs into another queue. In the following example,
the bswitch -q night argument chooses jobs from the night queue, and the
job ID number 0 specifies that all jobs should be switched:
$ bjobs -u all -q night

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user5 RUN night hostA hostD job5 Nov 21 18:16
5310 user5 PEND night hostA hostC job10 Nov 21 18:17

$ bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4 Edit lsb.queues and remove or comment out the definition for the queue you
want to remove.

5 Save the changes to lsb.queues.
6 Run badmin reconfig to reconfigure mbatchd.

Closing a queue Run badmin qclose:
badmin qclose normal
Queue <normal> is closed

When a user tries to submit a job to a closed queue the following message is displayed:
$ bsub -q normal ...
normal: Queue has been closed

Opening a queue Run badmin qopen:
badmin qopen normal
Queue <normal> is opened

Inactivating a
queue

Run badmin qinact:
badmin qinact normal
Queue <normal> is inactivated
Inside Platform Lava 19

Managing Users, Hosts, and Queues

20
Activating a
queue

Run badmin qact:
badmin qact normal
Queue <normal> is activated

Configuring automatic job requeue
You can configure automatic job requeue to kill and requeue a job while it is running or
when it is suspended.
To configure automatic job requeue, set REQUEUE_EXIT_VALUES in the queue
definition (lsb.queues) and specify the exit codes that will cause the job to be
requeued.

Example Begin Queue
...
REQUEUE_EXIT_VALUES = 99 100
...
End Queue

This configuration enables jobs that exit with 99 or 100 to be requeued.
To manually requeue a job, see the instructions in Running Jobs with Platform Lava.

Configuring exclusive job requeue
Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and define
the exit code using parentheses and the keyword EXCLUDE, as shown:
EXCLUDE(exit_code...)

When a job exits with any of the specified exit codes, it will be requeued, but it will not
be dispatched to the same host again.

Example Begin Queue
...
REQUEUE_EXIT_VALUES=30 EXCLUDE(20)
HOSTS=hostA hostB hostC
...
End Queue

A job in this queue can be dispatched to hostA, hostB, or hostC.
If a job running on hostA exits with value 30 and is requeued, it can be dispatched to
hostA, hostB, or hostC. However, if a job running on hostA exits with value 20 and
is requeued, it can only be dispatched to hostB or hostC.
If the job runs on hostB and exits with a value of 20 again, it can only be dispatched
on hostC. Finally, if the job runs on hostC and exits with a value of 20, it cannot be
dispatched to any of the hosts, so it will pend forever.

Configuring automatic job rerun for a queue
Enable automatic job rerun if you want to requeue and rerun a job when the execution
host goes down or when the Lava system fails while the job is running. Rerunnable jobs
do not rerun if the job fails.
Inside Platform Lava

Chapter 1
Inside Your Cluster
When a job is rerun or restarted, it is first returned to the queue from which it was
dispatched with the same options as the original job. The priority of the job is set
sufficiently high to ensure the job gets dispatched before other jobs in the queue. The
job uses the same job ID number. It is executed when a suitable host is available, and an
email message is sent to the job owner informing the user of the restart.
Automatic job rerun can be enabled at the job level, by the user, or at the queue level,
by the Lava administrator. (To submit a rerunnable job, see the instructions in Running
Jobs with Platform Lava.)
To enable automatic job rerun at the queue level, set RERUNNABLE in lsb.queues
to yes.

Example RERUNNABLE = yes

Controlling when jobs run
Dispatch and run windows are time windows that control when Lava jobs start and run.
◆ Dispatch windows can be defined in lsb.hosts. Dispatch and run windows can

be defined in lsb.queues.
◆ Hosts can only have dispatch windows. Queues can have dispatch windows and run

windows.
◆ Both windows affect job starting; only run windows affect the stopping of jobs.
◆ Dispatch windows define when hosts and queues are active and inactive. It does not

control job submission.
Run windows define when jobs can and cannot run. While a run window is closed,
Lava cannot start any of the jobs placed in the queue, or finish any of the jobs
already running.

◆ When a dispatch window closes, running jobs continue and finish, and no new jobs
can be dispatched to the host or from the queue. When a run window closes, Lava
suspends running jobs, but new jobs can still be submitted to the queue.

Dispatch windows A dispatch window specifies one or more time periods during which batch jobs are
dispatched to run on hosts. Jobs are not dispatched outside of configured windows.
Dispatch windows do not affect job submission and running jobs (they are allowed to
run until completion). By default, dispatch windows are not configured, queues are
always Active.
To configure dispatch windows:
1 Edit lsb.queues
2 Create a DISPATCH_WINDOW keyword for the queue and specify one or more

time windows. For example:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
DISPATCH_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster using:
a lsadmin reconfig
b badmin reconfig
Inside Platform Lava 21

Managing Users, Hosts, and Queues

22
4 Run bqueues -l to display dispatch windows.

You can also configure dispatch windows for a host, by setting DISPATCH_WINDOW in
lsb.hosts and specifying one or more time windows. If no host dispatch window is
configured, the window is always open.

Run windows A run window specifies one or more time periods during which jobs dispatched from a
queue are allowed to run. When a run window closes, running jobs are suspended, and
pending jobs remain pending. The suspended jobs are resumed when the window opens
again. By default, run windows are not configured, queues are always Active and jobs
can run until completion.
To configure a run window:
1 Edit lsb.queues.
2 Create a RUN_WINDOW keyword for the queue and specify one or more time

windows. For example:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
RUN_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster:
badmin reconfig

4 Run bqueues -l to display the run windows.
Inside Platform Lava

Chapter 1
Inside Your Cluster
Error and Event Logging

System directories and log files
Lava uses directories for temporary work files, log files, and transaction files and
spooling.
Lava keeps track of all jobs in the system by maintaining a transaction log in the work
subtree. The Lava log files are found in the directory
/opt/lava/work/lava/logdir

This is not a shared directory. It is not shared with the compute hosts.

Current job states Lava uses the lsb.events file to keep track of the state of all jobs. Each job is a
transaction from job submission to job completion. Lava keeps track of everything
associated with the job in the lsb.events file. By default, mbatchd automatically
backs up and rewrites the lsb.events file after every 1000 batch job completions.
This value is controlled by the MAX_JOB_NUM parameter in the lsb.params file.

Do not remove or modify the current lsb.events file. Removing or
modifying the lsb.events file could cause batch jobs to be lost.

History The events file is automatically trimmed and old job events are stored in lsb.event.n
files. When mbatchd starts, it refers only to the lsb.events file, not the
lsb.events.n files. The bhist command refers to the lsb.events.n files.

Job scripts When a user issues a bsub command from a shell prompt, Lava collects all the
commands issued on the bsub line and spools the data to mbatchd, which saves the
bsub command script in the info directory for use at dispatch time or if the job is rerun.
The info directory is managed by Lava and should not be modified by anyone.

Log directory
permissions and

ownership

Ensure that the LSF_LOGDIR directory is writable by root. The Lava administrator
must own LSF_LOGDIR.

Managing error logs
Error logs maintain important information about Lava operations. When you see any
abnormal behavior in Lava, you should first check the appropriate error logs to find out
the cause of the problem.
Lava log files grow over time. These files should occasionally be cleared, either by hand
or with automatic scripts.

Daemon error log Lava log files are reopened each time a message is logged, so if you rename or remove a
daemon log file, the daemons will automatically create a new log file.
The Lava daemons log messages when they detect problems or unusual situations.
The daemons can be configured to put these messages into files.
The error log file names for the Lava system daemons are:
◆ lim.log.host_name
◆ res.log.host_name
Inside Platform Lava 23

Error and Event Logging

24
◆ pim.log.host_name
◆ sbatchd.log.host_name
◆ mbatchd.log.host_name
◆ mbschd.log.host_name
Lava daemons log error messages in different levels so that you can choose to log all
messages, or only log messages that are deemed critical. Message logging is controlled
by the parameter LSF_LOG_MASK in lsf.conf. Possible values for this parameter
can be any log priority symbol that is defined in /usr/include/sys/syslog.h.
The default value for LSF_LOG_MASK is LOG_WARNING.

Error logging If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages from
Lava servers are logged to files in this directory.
If LSF_LOGDIR is defined, but the daemons cannot write to files there, the error log
files are created in /tmp.
If LSF_LOGDIR is not defined, errors are logged to the system error logs (syslog).
Look for the file /etc/syslog.conf, and read the man pages for syslog(3) and
syslogd(1).
Inside Platform Lava

Chapter 1
Inside Your Cluster
Monitoring Your Cluster

Viewing cluster information
Lava provides commands for users to get information about the cluster. Cluster
information includes the cluster master host, cluster name, cluster resource definitions,
and cluster administrator.

Use the lsid command to display the version of Lava, the name of your cluster, and
the current master host:
lsid
Platform Lava 6.1, October 25, 2004
Copyright 1992-2005 Platform Computing Corporation

My cluster name is lava
My master name is frontend-0.public

Restarting sbatchd on a host does not affect jobs that are running on that host.
If sbatchd is shut down, the host is not available to run new jobs. Existing jobs
running on that host continue, but the results are not sent to the user until sbatchd is
restarted.

Configuration errors
You can view configuration errors by using the following commands:
◆ lsadmin ckconfig -v
◆ badmin ckconfig -v

This reports all errors to your terminal.

Viewing host information
Lava uses some or all of the hosts in a cluster as execution hosts. The host list is
configured by the Lava administrator. Use the bhosts command to view host
information. Use the lsload command to view host load information.

To view the ... Run ...

Version of Lava lsid

Cluster name lsid

Current master host lsid

Cluster administrators lsclusters

To view... Run...

All hosts in the cluster and their status bhosts

Detailed server host information bhosts -l and lshosts -l
Host load by host lsload

Host architecture information lshosts

Host history badmin hhist

Host model and type information lsinfo

Viewing job exit rate and load for hosts bhosts -l and bhosts -x
Inside Platform Lava 25

Monitoring Your Cluster

26
Host states describe the ability of a host to accept and run batch jobs in terms of daemon
states, load levels, and administrative controls. The bhosts and lsload commands
display host states.

bhosts Displays the current status of the host about its ability to run batch jobs:

bhosts -l Displays the closed reasons. A closed host will not accept new batch jobs:

lsload Displays the current state of the host about its ability to run batch jobs and remote tasks:

To view all hosts in the cluster
Run bhosts to display information about all hosts and their status.

Status Description

ok Host is available to accept and run new batch jobs.
unavail Host is down, or LIM and sbatchd are unreachable.
unreach LIM is running but sbatchd is unreachable.
closed Host will not accept new jobs. Use bhosts -l to display the reasons.

Status Description

closed_Adm A Lava administrator or root explicitly closed the host using badmin hclose.
Running jobs are not affected.

closed_Busy The value of a load index exceeded a threshold (configured in lsb.hosts,
displayed by bhosts -l). Running jobs are not affected. Indices that exceed
thresholds are identified with an asterisk (*).

closed_Full The configured maximum number of running jobs has been reached.
Running jobs will not be affected.

closed_LIM sbatchd is running but LIM is unavailable.
closed_Lock A Lava administrator or root explicitly locked the host using

lsadmin limlock. Running jobs are suspended (SSUSP). Use
lsadmin limunlock to unlock LIM on the local host.

closed_Wind Host is closed by a dispatch window defined in lsb.hosts. Running jobs are
not affected.

Status Description

ok Host is available to accept and run batch jobs and remote tasks.
-ok LIM is running but RES is unreachable.
busy Does not affect batch jobs, only used for remote task placement (i.e., lsrun).

The value of a load index exceeded a threshold (configured in
lsf.cluster.lava, displayed by lshosts -l). Indices that exceed thresholds are
identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task placement (i.e., lsrun).
Host is locked by a run window (configured in lsf.cluster.lava, displayed by
lshosts -l).

lockU Will not accept new batch jobs or remote tasks. A Lava administrator or
root explicitly locked the host (i.e., lsadmin limlock). Running jobs are not
affected.

unavail Host is down, or LIM is unavailable.
Inside Platform Lava

Chapter 1
Inside Your Cluster
To view detailed host information
Run bhosts -l host_name and lshosts -l host_name to display all
information about each server host such as the CPU factor and the load thresholds to
start, suspend, and resume jobs.

To view host load by host
The lsload command reports the current status and load levels of hosts in a cluster.
The lshosts -l command shows the load thresholds.
The lsmon command provides a dynamic display of the load information. The Lava
administrator can find unavailable or overloaded hosts with these tools.
Run lsload to see load levels for each host.

To view host architecture
A Lava cluster may consist of hosts of differing architectures and speeds. The lshosts
command displays configuration information about hosts. All these parameters are
defined by the Lava administrator in the Lava configuration files, or determined by the
LIM directly from the system.
Host types represent binary compatible hosts; all hosts of the same type can run the
same executable. Host models give the relative CPU performance of different
processors.

To view host history
Run badmin hhist to view the history of a host such as when it is opened or closed.

To view host model and type
Run lsinfo -m to display information about host models that exist in the cluster.
Run lim -t to display the model of the current host. You must be the Lava
administrator to use this command.

To view host dispatch windows
Use bhosts -l to display host dispatch windows.

Viewing queue information
The bqueues command displays information about queues. The bqueues -l option
also gives current statistics about the jobs in a particular queue such as the total number
of jobs in the queue, the number of running jobs, and the number of suspended jobs.
Queue states, displayed by bqueues, describe the ability of a queue to accept and start
batch jobs using a combination of the following states:
◆ Open queues accept new jobs
◆ Closed queues do not accept new jobs
◆ Active queues start jobs on available hosts
◆ Inactive queues hold all jobs

State Description

Open:Active Accepts and starts new jobs�normal processing
Open:Inact Accepts and holds new jobs�collecting
Inside Platform Lava 27

Monitoring Your Cluster

28
Queue states can be changed by a Lava administrator or root.
In addition to the procedures listed here, see the bqueues(1) man page for more
details.

To view available queues
Run bqueues. You can view the current status of a particular queue or all queues. The
bqueues command also displays available queues in the cluster.
Use bqueues -u user_name to specify a user so that bqueues displays only the
queues that accept jobs from these users.
The bqueues -m host_name option allows users to specify a host name so that
bqueues displays only the queues that use these hosts to run jobs.

To view detailed queue information
To see the complete status and configuration for each queue, run bqueues -l. You
can specify queue names on the command-line to select specific queues.

To view the history of state changes in a queue
Run badmin qhist to display the times when queues are opened, closed, activated,
and inactivated.

To view queue administrators
Use bqueues -l for the queue.

To view information about run windows
Use bqueues -l to display information about queue run windows.

To view queue dispatch windows
Use bqueues -l to display queue dispatch windows.

Closed:Active Does not accept new jobs, but continues to start jobs�draining
Closed:Inact Does not accept new jobs and does not start jobs�all activity is

stopped

State Description
Inside Platform Lava

C H A P T E R

2
Working with Resources and

Resource Requirements

Contents ◆ �Resource Classifications� on page 30
◆ �Configuring Your Own Resources� on page 36
◆ �External Load Indices and ELIM� on page 39
◆ �Configuring Resource Requirements� on page 42
◆ �Resource Requirement Strings� on page 43
◆ �Monitoring Resources� on page 46
Inside Platform Lava 29

Resource Classifications

30
Resource Classifications
The Lava system uses built-in and configured resources to track job resource
requirements and schedule jobs according to the resources available on individual hosts.

How resources are classified
By values

By the way values
change

By definitions

By scope

Note: Before you can specify resources or add your own configured resources, you
must define your hosts in the Host section of lsf.cluster.lava. By default, the compute
hosts are added to the cluster dynamically and are not defined in lsf.cluster.lava.
Follow the example definitions in lsf.cluster.lava.

Boolean resources
Boolean resources have a value of one (1) if they are defined for a host, and zero (0) if
they are not defined for the host. Use Boolean resources to configure host attributes to
be used in selecting hosts to run jobs. For example:
◆ Machines may have different types and versions of operating systems.
◆ Machines may play different roles in the system, such as file server or compute

server.

Boolean resources Resources that denote the availability of specific features.
Numerical resources Resources that take numerical values such as all the load indices,

number of processors on a host, or host CPU factor.
String resources Resources that take string values such as host type, host model, host

status.

Dynamic Resources Resources that change their values dynamically: host status
and all the load indices.

Static Resources Resources that do not change their values: all resources
except for load indices or host status.

Site-Defined
Resources

Resources defined by user sites: external load indices and
resources defined in the lsf.shared file (shared resources).

Built-In Resources Resources that are always defined in Lava, such as load indices,
number of CPUs, or total swap space.

Host-Based
Resources

Resources that are not shared among hosts, but are tied to
individual hosts, such as swap space, CPU, or memory. An
application must run on a particular host to access the
resources. Using up memory on one host does not affect the
available memory on another host.

Shared Resources Resources that are not associated with individual hosts in the
same way, but are owned by the entire cluster, or a subset of
hosts within the cluster such as floating licenses or shared file
systems. An application can access such a resource from any
host that is configured to share it, but doing so affects its value as
seen by other hosts.
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
◆ Some machines may have special-purpose devices needed by some
applications.

◆ Certain software packages or licenses may be available only on some of
the machines.

Specify a Boolean resource in a resource requirement selection string of a job, to select
only hosts that can run the job.
Some examples of Boolean resources:

Use a boolean resource to specify a host
Usually, to indicate that a job must run on one of a number of specified hosts, you use
the bsub -m "hostA hostB ..." option. By specifying a single host, you can force
your job to wait until that host is available and then run on that host.
If you have applications that need specific resources, it is more flexible to create a new
Boolean resource and configure that resource for the appropriate hosts in the cluster.
This must be done by the Lava administrator. If you specify a host list using the -m
option of bsub, you must change the host list every time you add a new host that
supports the desired resources. By using a Boolean resource, the Lava administrator can
add, move, or remove resources without forcing users to learn about changes to
resource configuration.

Load indices
Load indices are built-in resources that measure the availability of dynamic, non-shared
resources on hosts in the Lava cluster.
Load indices built into the LIM are updated at fixed time intervals.
External load indices are defined and configured by the Lava administrator. An External
Load Information Manager (ELIM) program collects the values of site-defined external
load indices and updates LIM when new values are received.

Resource Name Describes Meaning of Example Name

cs Role in cluster Compute server
fs Role in cluster File server
linux64 Operating system Linux operating system
frame Available software FrameMaker license
Inside Platform Lava 31

Resource Classifications

32
Load indices collected by LIM
.

Status The status index is a string indicating the current status of the host. This status applies
to the LIM and RES.
The possible values for status are:

CPU run queue
lengths

The r15s, r1m, and r15m load indices are the 15-second, 1-minute, and 15-minute
average CPU run queue lengths. This is the average number of processes ready to use
the CPU during the given interval.
Run queue length indices are not necessarily the same as the load averages printed by the
uptime(1) command; uptime load averages on some platforms also include
processes that are in short-term wait states (such as paging or disk I/O).

Effective run
queue length

On multiprocessor systems, more than one process can execute at a time. Lava scales the
run queue value on multiprocessor systems to make the CPU load of uniprocessors and
multiprocessors comparable. The scaled value is called the effective run queue length.

Index Measures Units Direction Averaged
over

Update
Interval

status host status string 15 seconds
r15s run queue length processes increasing 15 seconds 15 seconds
r1m run queue length processes increasing 1 minute 15 seconds
r15m run queue length processes increasing 15 minutes 15 seconds
ut CPU utilization percent increasing 1 minute 15 seconds
pg paging activity pages in + pages out

per second
increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds
it idle time minutes decreasing N/A 30 seconds
swp available swap space MB decreasing N/A 15 seconds
mem available memory MB decreasing N/A 15 seconds
tmp available space in temporary

file system
MB decreasing N/A 120 seconds

io disk I/O (shown by lsload -l) KB per second increasing 1 minute 15 seconds
name external load index configured by Lava administrator site-defined

Status Description

ok The host is available to accept remote jobs. The LIM can select the
host for remote execution.

-ok When the status of a host is preceded by a dash (-), it means LIM is
available but RES is not running on that host or is not responding.

busy The host is overloaded (busy) because a load index exceeded a
configured threshold. An asterisk (*) marks the offending index.
LIM will not select the host for interactive jobs.

lockW The host is locked by its run window. Use lshosts to display run
windows.

lockU The host is locked by a Lava administrator or root.
unavail The host is down or the LIM on the host is not running or is not

responding.
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
Use lsload -E to view the effective run queue length.

Normalized run
queue length

Lava also adjusts the CPU run queue based on the relative speeds of the processors (the
CPU factor). The normalized run queue length is adjusted for both number of
processors and CPU speed. The host with the lowest normalized run queue length will
run a CPU-intensive job the fastest.
Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization The ut index measures CPU utilization, which is the percentage of time spent running
system and user code. A host with no process running has a ut value of 0 percent; a host
on which the CPU is completely loaded has a ut of 100 percent.

Paging rate The pg index gives the virtual memory paging rate in pages per second. This index is
closely tied to the amount of available RAM memory and the total size of the processes
running on a host; if there is not enough RAM to satisfy all processes, the paging rate
will be high. Paging rate is a good measure of how a machine will respond to interactive
use; a machine that is paging heavily feels very slow.

Interactive idle
time

The it index is the interactive idle time of the host, in minutes. Idle time is measured
from the last input or output on a directly attached terminal or a network pseudo-
terminal supporting a login session. This does not include activity directly through the
X server such as CAD applications or emacs windows.

Temporary
directories

The tmp index is the space available in MB on the file system that contains the
temporary directory (/tmp).

Swap space The swp index gives the currently available virtual memory (swap space) in MB. This
represents the largest process that can be started on the host.

Memory The mem index is an estimate of the real memory currently available to user processes.
This represents the approximate size of the largest process that could be started on a
host without causing the host to start paging.
LIM reports the amount of free memory available. Lava calculates free memory as a sum
of physical free memory, cached memory, buffered memory, and an adjustment value.
The command vmstat also reports free memory but displays these values separately.
There may be a difference between the free memory reported by LIM and the free
memory reported by vmstat because of virtual memory behavior variations among
operating systems. You can write an ELIM that overrides the free memory values
returned by LIM. (For information on ELIMs, see �External Load Indices and ELIM�
on page 39.)

I/O rate The io index measures I/O throughput to disks attached directly to this host, in KB per
second. It does not include I/O to disks that are mounted from other hosts.

Static resources
Static resources are built-in resources that represent host information that does not
change over time, such as the maximum RAM available to user processes or the number
of processors in a machine. Most static resources are determined by the LIM at start-up
time, or when Lava detects hardware configuration changes.
Static resources can be used to select appropriate hosts for particular jobs based on
binary architecture, relative CPU speed, and system configuration.
Inside Platform Lava 33

Resource Classifications

34
The resources ncpus, maxmem, maxswp, and maxtmp are not static on hosts that
support dynamic hardware reconfiguration.

Static resources
reported by LIM

CPU factor
The CPU factor (cpuf) is the speed of the host�s CPU relative to other hosts in the
cluster. If one processor is twice the speed of another, its CPU factor should be twice as
large. The CPU factors are defined by the Lava administrator. For multiprocessor hosts,
the CPU factor is the speed of a single processor; Lava automatically scales the host CPU
load to account for additional processors.

Shared resources
Shared resources are configured resources that are not tied to a specific host, but are
associated with the entire cluster or a specific subset of hosts within the cluster. For
example:
◆ Floating licenses for software packages
◆ Disk space on a file server that is mounted by several machines
◆ The physical network connecting the hosts
An application may use a shared resource by running on any host from which that
resource is accessible. For example, in a cluster in which each host has a local disk but
can also access a disk on a file server, the disk on the file server is a shared resource, and
the local disk is a host-based resource. In contrast to host-based resources such as
memory or swap space, a shared resource from one machine affects the availability of
that resource as seen by other machines. One value for the entire cluster measures the
utilization of the shared resource, but each host-based resource is measured separately.
Lava does not contain any built-in shared resources. All shared resources must be
configured by the Lava administrator. A shared resource may be configured to be
dynamic or static. In the above example, the total space on the shared disk may be static
while the amount of space currently free is dynamic. A site may also configure the shared
resource to report numeric, string, or Boolean values.
The following restrictions apply to the use of shared resources in Lava.
◆ A shared resource cannot be used as a load threshold in the Hosts section of the

lsf.cluster.lava file.

Index Measures Units Determined by

type host type string configuration
model host model string configuration
hname host name string configuration
cpuf CPU factor relative configuration
server host can run remote jobs Boolean configuration
rexpri execution priority nice(2) argument configuration
ncpus number of processors processors LIM
ndisks number of local disks disks LIM
maxmem maximum RAM MB LIM
maxswp maximum swap space MB LIM
maxtmp maximum space in /tmp MB LIM
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
◆ A shared resource cannot be used in the loadSched/loadStop thresholds, or in
the STOP_COND parameter in the queue definition in the lsb.queues file.
For information on loadSched, loadStop, and STOP_COND, see �Configuring
Load Thresholds� on page 53.
Inside Platform Lava 35

Configuring Your Own Resources

36
Configuring Your Own Resources
Lava schedules jobs based on available resources. There are many resources built into
Lava, but you can also add your own resources, and then use them the same way as built-
in resources.
For maximum flexibility, you should characterize your resources clearly enough so that
users have satisfactory choices. For example, if some of your machines are connected to
both Ethernet and FDDI, while others are only connected to Ethernet, then you
probably want to define a resource called fddi and associate the fddi resource with
machines connected to FDDI. This way, users can specify resource fddi if they want
their jobs to run on machines connected to FDDI.

Adding new resources to your cluster
To add host resources to your cluster, use the following steps:
1 Log on to any host in the cluster as the Lava administrator.
2 Define new resources in the Resource section of lsf.shared. Specify at least a

name and a brief description, which will be displayed to a user by lsinfo.
See �Configuring the lsf.shared resource section� on page 36.

3 For static Boolean resources for all hosts that have the new resources, add the
resource name to the RESOURCES column in the Host section of
lsf.cluster.lava.

4 For shared resources for all hosts that have the new resources, associate the
resources with the hosts (you might also have a reason to configure non-shared
resources in this section).
See �Configuring the lsf.cluster.lava resourcemap section� on page 37.

5 Reconfigure your cluster.

Configuring the lsf.shared resource section
Configured resources are defined in the Resource section of lsf.shared. There is
no distinction between shared and non-shared resources.
You must specify at least a name and description for the resource, using the keywords
RESOURCENAME and DESCRIPTION.
◆ A resource name cannot begin with a number.
◆ A resource name cannot contain any of the following characters

: . () [+ - * / ! & | < > @ =

◆ A resource name cannot be any of the following reserved names:
cpu cpuf io login ls idle maxmem maxswp maxtmp type model
status it mem ncpus ndisks pg r15m r15s r1m swap swp tmp ut

◆ Resource names are case sensitive
◆ Resource names can be up to 29 characters in length
◆ You can also specify:

❖ The resource type (TYPE = Boolean | String | Numeric)
The default is Boolean.

❖ For dynamic resources, the update interval: INTERVAL, in seconds
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
❖ For numeric resources, where a higher value indicates greater load:
INCREASING = Y

❖ For numeric shared resources, where Lava releases the resource when a job
using the resource is suspended: RELEASE = Y

When the optional attributes are not specified, the resource is treated as static and
Boolean.

Example

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
mips Boolean () () (MIPS architecture)
dec Boolean () () (DECStation system)
scratch Numeric 30 N (Shared scratch space on server)
synopsys Numeric 30 N (Floating licenses for Synopsys)
verilog Numeric 30 N (Floating licenses for Verilog)
console String 30 N (User Logged in on console)
End Resource

Configuring the lsf.cluster.lava resourcemap section
Resources are associated with the hosts for which they are defined in the ResourceMap
section of lsf.cluster.lava.
For each resource, you must specify the name and the hosts that have it.
Make sure that the hosts that have the resources you want to configure are defined in
the Host section of lsf.cluster.lava. By default, the compute hosts are added to
the cluster dynamically and are not defined in lsf.cluster.lava.
If the ResourceMap section is not defined, then any dynamic resources specified in
lsf.shared are not tied to specific hosts, but are shared across all hosts in the cluster.

Example A cluster consists of hosts host1, host2, and host3.
Begin ResourceMap
RESOURCENAME LOCATION
verilog (5@[all ~host1 ~host2])
synopsys (2@[host1 host2] 2@[others])
console (1@[host1] 1@[host2]1@[host3])
xyz (1@[default])
End ResourceMap

In this example:
◆ Five units of the verilog resource are defined on host3 only (all hosts except

host1 and host2).
◆ Two units of the synopsys resource are shared between host1 and host2. Two

more units of the synopsys resource are defined on host3 (shared among all the
remaining hosts in the cluster).

◆ One unit of the console resource is defined on each host in the cluster (assigned
explicitly). One unit of the xyz resource is defined on each host in the cluster
(assigned with the keyword default).

RESOURCENAME The name of the resource, as defined in lsf.shared.
Inside Platform Lava 37

Configuring Your Own Resources

38
LOCATION Defines the hosts that share the resource. For a static resource, you must define an initial
value here as well. Do not define a value for a dynamic resource.
Possible states of a resource:
◆ Each host in the cluster has the resource
◆ The resource is shared by all hosts in the cluster
◆ There are multiple instances of a resource within the cluster, and each instance is

shared by a unique subset of hosts.

Syntax
([resource_value@][host_name... | all [~host_name]... | others | default]
...)

◆ For static resources, you must include the resource value, which indicates the
quantity of the resource. Do not specify the resource value for dynamic resources
because information about dynamic resources is updated by ELIM.

◆ Type square brackets around the list of hosts, as shown. You can omit the
parenthesis if you only specify one set of hosts.

◆ Each set of hosts within square brackets specifies an instance of the resource. The
same host cannot be in more than one instance of a resource. All hosts within the
instance share the quantity of the resource indicated by its value.

◆ The keyword all refers to all the server hosts in the cluster, collectively. Use the
not operator (~) to exclude hosts.

◆ The keyword others refers to all hosts not otherwise listed in the instance.
◆ The keyword default refers to each host in the cluster, individually.
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
External Load Indices and ELIM
The Lava Load Information Manager (LIM) collects built-in load indices that reflect the
load situations of CPU, memory, disk space, I/O, and interactive activities on individual
hosts.
While built-in load indices might be sufficient for most jobs, you might have special
workload or resource dependencies that require custom external load indices defined
and configured by the Lava administrator. Load and shared resource information from
external load indices are used the same as built in load indices for job scheduling and
host selection.
You can write an External Load Information Manager (ELIM) program that collects the
values of configured external load indices and updates LIM when new values are
received.
An ELIM can be as simple as a small script or as complicated as a sophisticated C
program. A well-defined protocol allows the ELIM to talk to LIM.
The ELIM executable must be located in LSF_SERVERDIR.

How Lava uses ELIM for external resource collection
The values of static external resources are specified through the lsf.cluster.lava
configuration file. The values of all dynamic resources, regardless of whether they are
shared or host-based, are collected through an ELIM.

When an ELIM is
started

An ELIM is started in the following situations:
◆ On every host, if any dynamic resource is configured as host-based. For example, if

the LOCATION field in the ResourceMap section of lsf.cluster.lava is
([default]), then every host will start an ELIM.

◆ On the master host, for any cluster-wide resources. For example, if the LOCATION
field in the ResourceMap section of lsf.cluster.lava is ([all]), then an
ELIM is started on the master host.

◆ On the first host specified for each instance, if multiple instances of the resource
exist within the cluster. For example, if the LOCATION field in the ResourceMap
section of lsf.cluster.lava is ([hostA hostB hostC] [hostD hostE
hostF]), then an ELIM will be stared on hostA and hostD to report the value
of that resource for that set of hosts.
If the host reporting the value for an instance goes down, then an ELIM is started
on the next available host in the instance. In above example, if hostA became
unavailable, an ELIM is started on hostB. If the hostA becomes available again
then the ELIM on hostB is shut down and the one on hostA is started.

There is only one ELIM on each host, regardless of the number of resources on which
it reports. If only cluster-wide resources are to be collected, then an ELIM will only be
started on the master host.

Environment
variables

When LIM starts, the following environment variables are set for ELIM:
◆ LSF_MASTER: This variable is defined if the ELIM is being invoked on the master

host; otherwise, it is undefined. This can be used to test whether the ELIM should
report on cluster-wide resources that only need to be collected on the master host.
Inside Platform Lava 39

External Load Indices and ELIM

40
◆ LSF_RESOURCES: This variable contains a list of resource names (separated by
spaces) on which the ELIM is expected to report. A resource name is only put in
the list if the host on which the ELIM is running shares an instance of that resource.

Writing an ELIM
The ELIM must be an executable program, either an interpreted script or compiled
code.

ELIM output The ELIM communicates with the LIM by periodically writing a load update string to
its standard output. The load update string contains the number of indices followed by
a list of name-value pairs in the following format:
number_indices [index_name index_value]...

For example,
3 tmp2 47.5 nio 344.0 licenses 5

This string reports three indices: tmp2, nio, and licenses, with values 47.5, 344.0,
and 5 respectively. Index values must be numbers between -INFINIT_LOAD and
INFINIT_LOAD as defined in the lsf.h header file.
If the ELIM is implemented as a C program, as part of initialization it should use
setbuf(3) to establish unbuffered output to stdout.
The ELIM should ensure that the entire load update string is written successfully to
stdout. This can be done by checking the return value of printf(3s) if the ELIM
is implemented as a C program or as the return code of /bin/echo(1) from a shell
script. The ELIM should exit if it fails to write the load information.
Each LIM sends updated load information to the master every 15 seconds. Depending
on how quickly your external load indices change, the ELIM should write the load
update string at most once every 15 seconds. If the external load indices rarely change,
the ELIM can write the new values only when a change is detected. The LIM continues
to use the old values until new values are received.

ELIM location The executable for the ELIM must be in LSF_SERVERDIR.
Use the following naming convention:

LSF_SERVERDIR/elim.application
For example, elim.license

If LIM expects some resources to be collected by an ELIM according to configuration,
it invokes the ELIM automatically on startup. The ELIM runs with the same user ID
and file access permission as the LIM.

Note that LSF_SERVERDIR is not a shared directory.

ELIM restart The LIM restarts the ELIM if it exits. To prevent problems in case of a fatal error in the
ELIM, it is restarted at most once every 90 seconds. When the LIM terminates, it sends
a SIGTERM signal to the ELIM. The ELIM must exit upon receiving this signal.
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
Debugging an ELIM
Set the parameter LSF_ELIM_DEBUG=y in the Parameters section of
lsf.cluster.lava to log all load information received by LIM from the ELIM in
the LIM log file.
Set the parameter LSF_ELIM_BLOCKTIME=seconds in the Parameters section of
lsf.cluster.lava to configure how long LIM waits before restarting the ELIM.
Use the parameter LSF_ELIM_RESTARTS=integer in the Parameters section of
lsf.cluster.lava to limit the number of times an ELIM can be restarted.
See the Platform Lava Man Pages for more details on these parameters.
Inside Platform Lava 41

Configuring Resource Requirements

42
Configuring Resource Requirements
Resource requirements define which hosts a job can run on. Each job has its resource
requirements. Hosts that match the resource requirements are the candidate hosts.
When Lava schedules a job, it uses the load index values of all the candidate hosts. The
load values for each host are compared to the scheduling conditions. Jobs are only
dispatched to a host if all load values are within the scheduling thresholds.

Default
configuration

If a job has no resource requirements, Lava places it on a host of the same type as the
submission host (type==local). However, if a job has string or Boolean resource
requirements specified and the host type has not been specified, Lava places the job on
any host (type==any) that satisfies the resource requirements.

When to configure
resource

requirements

To override the Lava defaults, specify resource requirements explicitly. Resource
requirements can be set for queues, for individual applications, or for individual jobs.
A resource requirement is an expression that contains resource names and operators.

Defining resource requirements for a queue
Each queue can define resource requirements that will be applied to all the jobs in the
queue.
When resource requirements are specified for a queue, and no job-level resource
requirement is specified, the queue-level resource requirements become the default
resource requirements for the job.

Syntax The condition for dispatching a job to a host can be specified through the queue-level
RES_REQ parameter in the queue definition in lsb.queues.

Example
RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Using the hname resource in the resource requirement string allows you to set up
different conditions for different hosts in the same queue.

To specify resource requirements for a specific job, see Running Jobs with Platform
Lava.
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
Resource Requirement Strings
Most Lava commands accept a -R res_req argument to specify resource
requirements.
A resource requirement string describes the resources a job needs. Lava uses resource
requirements to select hosts for remote execution and job execution.

How queue and job resource requirements are resolved
If job-level resource requirements are specified together with queue-level resource
requirements:
◆ In a select string, a host must satisfy both queue-level and job-level requirements

for the job to be dispatched.
◆ An order section defined at the queue level is ignored if different order

requirements are specified at the job level. The default order string is r15s:pg.

Resource requirement string sections
◆ A selection section (select). The selection section specifies the criteria for

selecting hosts from the system.
◆ An ordering section (order). The ordering section indicates how the hosts that

meet the selection criteria should be sorted.

Syntax select[selection_string] order[order_string]

The square brackets must be typed as shown.
The section names are select and order.
If no section name is given, the entire string is treated as a selection string. The select
keyword may be omitted if the selection string is the first string in the resource
requirement.
Each section has a different syntax.

Selection string
The selection string specifies the characteristics a host must have to match the resource
requirement. It is a logical expression built from a set of resource names. The selection
string is evaluated for each host; if the result is non-zero, then that host is selected.

Syntax The selection string can combine resource names with logical and arithmetic operators.
Non-zero arithmetic values are treated as logical TRUE, and 0 as logical FALSE.
Boolean resources have a value of 1 if they are defined for a host, and 0 if they are not
defined for the host.
The resource names swap, idle, login, and cpu are accepted as aliases for swp, it,
ls, and r1m respectively.
For ut, specify the percentage CPU utilization as an integer between 0-100.
For the string resources type and model, the special value any selects any value and
local selects the same value as that of the local host. For example, type==local
selects hosts of the same type as the host submitting the job. If a job can run on any type
of host, include type==any in the resource requirements.
Inside Platform Lava 43

Resource Requirement Strings

44
If no type is specified, the default for bsub is type==local unless a string or
Boolean resource is specified, in which case it is type==any.

Operators These operators can be used in selection strings. The operators are listed in order of
decreasing precedence.

Example select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf >
4.0)]

Specifying shared resources with the keyword “defined”
A shared resource may be used in the resource requirement string of any Lava
command. For example, when submitting a Lava job that requires a certain amount of
shared scratch space, you might submit the job as follows:
$ bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared scratch space.
The job will only be scheduled if the value of the "avail_scratch" resource is more
than 200 MB and will go to a host with at least 50 MB of available swap space.
It is possible for a system to be configured so that only some hosts within the Lava
cluster have access to the scratch space. To exclude hosts that cannot access a shared
resource, the defined(resource_name) function must be specified in the
resource requirement string.
For example:
$ bsub -R "defined(avail_scratch) && avail_scratch > 100 &&
swap > 100" myjob

would exclude any hosts that cannot access the scratch resource. The Lava administrator
configures which hosts do and do not have access to a particular shared resource.

Order string
The order string allows the selected hosts to be sorted according to the values of
resources. The values of r15s, r1m, and r15m used for sorting are the normalized load
indices returned by lsload -N.

Syntax Meaning

-a
!a

Negative of a
Logical not: 1 if a==0, 0 otherwise

a * b
a / b

Multiply a and b
Divide a by b

a + b
a - b

Add a and b
Subtract b from a

a > b
a < b
a >= b
a <= b

1 if a is greater than b, 0 otherwise
1 if a is less than b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise

a == b
a != b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

a && b Logical AND: 1 if both a and b are non-zero, 0 otherwise
a || b Logical OR: 1 if either a or b is non-zero, 0 otherwise
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
The order string is used for host sorting and selection. The ordering begins with the
rightmost index in the order string and proceeds from right to left. The hosts are sorted
into order based on each load index, and if more hosts are available than were requested,
the LIM drops the least desirable hosts according to that index. The remaining hosts are
then sorted by the next index.
After the hosts are sorted by the leftmost index in the order string, the final phase of
sorting orders the hosts according to their status, with hosts that are currently not
available for load sharing (not in the ok state) listed at the end.
Because the hosts are sorted again for each load index, only the host status and the
leftmost index in the order string actually affect the order in which hosts are listed. The
other indices are only used to drop undesirable hosts from the list.
When sorting is done on each index, the direction in which the hosts are sorted
(increasing vs. decreasing values) is determined by the default order returned by lsinfo
for that index. This direction is chosen such that after sorting, by default, the hosts are
ordered from best to worst on that index.

Syntax [-]resource_name [:[-]resource_name]...

You can specify any built-in or external load index.
When an index name is preceded by a minus sign �-�, the sorting order is reversed so that
hosts are ordered from worst to best on that index.

Default The default sorting order is r15s:pg (except for lslogin(1): ls:r1m).

Example swp:r1m:tmp:r15s
Inside Platform Lava 45

Monitoring Resources

46
Monitoring Resources
lsinfo Use lsinfo to list the resources available in your cluster. The lsinfo command lists

all the resource names and their descriptions:
$ lsinfo
RESOURCE_NAME TYPE ORDER DESCRIPTION
r15s Numeric Inc 15-second CPU run queue length
r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)
r15m Numeric Inc 15-minute CPU run queue length
ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)
pg Numeric Inc Paging rate (pages/second)
io Numeric Inc Disk IO rate (Kbytes/second)
ls Numeric Inc Number of login sessions (alias: login)
it Numeric Dec Idle time (minutes) (alias: idle)
tmp Numeric Dec Disk space in /tmp (Mbytes)
swp Numeric Dec Available swap space (Mbytes) (alias:swap)
mem Numeric Dec Available memory (Mbytes)
ncpus Numeric Dec Number of CPUs
ndisks Numeric Dec Number of local disks
maxmem Numeric Dec Maximum memory (Mbytes)
maxswp Numeric Dec Maximum swap space (Mbytes)
maxtmp Numeric Dec Maximum /tmp space (Mbytes)
cpuf Numeric Dec CPU factor
server Boolean N/A Lava server host
cserver Boolean N/A Compute server
fserver Boolean N/A File server
type String N/A Host type
model String N/A Host model
status String N/A Host status
hname String N/A Host name

TYPE_NAME
HPPA
SGI6
ALPHA
SUNSOL
RS6K
NTX86

MODEL_NAME CPU_FACTOR
DEC3000 10.00
R10K 14.00
PENT200 6.00
IBM350 7.00
SunSparc 6.00
HP735 9.00
HP715 5.00

lshosts Use lshosts to get a list of the resources defined on a specific host:
$ lshosts hostA
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL732 Ultra2 20.2 2 256M 679M Yes ()
Inside Platform Lava

Chapter 2
Working with Resources and Resource Requirements
Viewing host load by resource
Use lshosts -s to view host load by shared resource:
$ lshosts -s
RESOURCE VALUE LOCATION
tot_lic 5 host1 host2
tot_scratch 500 host1 host2

The above output indicates that five licenses are available, and that the shared scratch
directory currently contains 500 MB of space.
The VALUE field indicates the amount of that resource. The LOCATION column
shows the hosts that share this resource. The lshosts -s command displays static
shared resources. The lsload -s command displays dynamic shared resources.

Viewing shared resources for hosts
Run bhosts -s to view shared resources for hosts. For example:
$ bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail_lic 2 3.0 hostA hostB
avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources, the
RESERVED column displays the amount that has been reserved by running jobs.

Viewing load on a host
Use bhosts -l to check the load levels on the host, and adjust the suspending
conditions of the host or queue if necessary. The bhosts -l command gives the most
recent load values used for the scheduling of jobs. A dash (-) in the output indicates that
the particular threshold is not defined.
$ bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp mem

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 297M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

Viewing information about load indices
The lsinfo -l command displays all information available about load indices in the
system. You can also specify load indices on the command line to display information
about selected indices:
Inside Platform Lava 47

Monitoring Resources

48
$ lsinfo -l swp
RESOURCE_NAME: swp
DESCRIPTION: Available swap space (Mbytes) (alias: swap)
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE
Numeric Dec 60 Yes Yes NO

Viewing resource requirements for a queue
Use bqueues -l to view resource requirements (RES_REQ) defined for the queue.

Viewing resource requirements for a job
Use bjobs -l to view resource requirements defined for the job:
After a job is finished, use bhist -l to view resource requirements defined for the job:
Inside Platform Lava

C H A P T E R

3
Configuring Job Controls

Contents ◆ �Configuring Resource Usage Limits� on page 50
◆ �Configuring Load Thresholds� on page 53
◆ �Configuring Job Control Actions� on page 55
◆ �Configuring Job Priority by User� on page 58
◆ �Configuring Pre-Execution and Post-Execution Commands� on page 59
◆ �Configuring Job Starters for Queues� on page 61
Inside Platform Lava 49

Configuring Resource Usage Limits

50
Configuring Resource Usage Limits
Resource usage limits control how much resource can be consumed by running jobs.
Jobs that use more than the specified amount of a resource are signalled or have their
priority lowered.
Limits can be specified either for a queue by the Lava administrator (lsb.queues) or
for a job at submission time.
Limits specified at the queue level are hard limits, while those specified with job
submission are soft limits.

Summary of resource usage limits

How resource usage limits are prioritized
If no limit is specified at job submission, then the following apply to all jobs submitted
to the queue:

Incorrect resource usage limits
Incorrect limits are ignored and a warning message is displayed when the cluster is
reconfigured or restarted. A warning message is also logged to the mbatchd log file
when Lava is started.
If no limit is specified at job submission, then the following apply to all jobs submitted
to the queue:

Limit Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

Core file size limit -C core_limit CORELIMIT=limit integer KB
CPU time limit -c cpu_limit CPULIMIT=[default]

maximum
[hours:]minutes[/host_name |
/host_model]

Data segment size
limit

-D data_limit DATALIMIT=[default]
maximum

integer KB

File size limit -F file_limit FILELIMIT=limit integer KB
Memory limit -M mem_limit MEMLIMIT=[default]

maximum
integer KB

Run time limit -W run_limit RUNLIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]

Stack segment size
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB
Thread limit -T thread_limit THREADLIMIT=[default]

maximum
integer

If ... Then ...

Both default and maximum limits are defined The default is enforced
Only a maximum is defined The maximum is enforced
No limit is specified in the queue or at job submission No limits are enforced
Inside Platform Lava

Chapter 3
Configuring Job Controls
Resource usage limits specified at job submission must be less than the maximum
specified in lsb.queues.

Specifying resource usage limits
Queues can enforce resource usage limits on running jobs. Lava supports most of the
limits that the underlying operating system supports. In addition, Lava also supports a
few limits that the underlying operating system does not support.
Specify queue-level resource usage limits using parameters in lsb.queues.
Limits configured in lsb.queues apply to all jobs submitted to the queue. Job-level
resource usage limits specified at job submission override the queue definitions.

Maximum value
only

Specify only a maximum value for the resource.
For example, to specify a maximum run limit, use one value for the RUNLIMIT
parameter in lsb.queues:
RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than 10
minutes. Jobs in the RUN state for longer than 10 minutes are killed by Lava.
If only one run limit is specified, jobs that are submitted with bsub -W with a run limit
that exceeds the maximum run limit will not be allowed to run. Jobs submitted without
bsub -W will be allowed to run but will be killed when they are in the RUN state for
longer than the specified maximum run limit.
For example, in lsb.queues:
RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more than 10
minutes.

Default and
maximum values

If you specify two limits, the first one is the default (soft) limit for jobs in the queue and
the second one is the maximum (hard) limit. Both the default and the maximum limits
must be positive integers. The default limit must be less than the maximum limit. The
default limit is ignored if it is greater than the maximum limit.
Use the default limit to avoid having to specify resource usage limits in the bsub
command.
For example, to specify a default and a maximum run limit, use two values for the
RUNLIMIT parameter in lsb.queues:
RUNLIMIT = 10 15

◆ The first number is the default run limit applied to all jobs in the queue that are
submitted without a job-specific run limit (without bsub -W).

If ... Then ...

The default limit is incorrect The default is ignored and the maximum limit is
enforced

Both default and maximum
limits are specified and the
maximum is incorrect

The maximum is ignored and the resource has no
maximum limit�only a default limit

Both default and maximum
limits are incorrect

The default and maximum are ignored and no limit
is enforced
Inside Platform Lava 51

Configuring Resource Usage Limits

52
◆ The second number is the maximum run limit applied to all jobs in the queue that
are submitted with a job-specific run limit (with bsub -W). The default run limit
must be less than the maximum run limit.

You can specify both default and maximum values for the following resource usage
limits in lsb.queues:
◆ CPULIMIT
◆ DATALIMIT
◆ MEMLIMIT
◆ PROCESSLIMIT
◆ RUNLIMIT
◆ THREADLIMIT

Host specification
with two limits

If default and maximum limits are specified for CPU time limits or run time limits, only
one host specification is permitted. For example, the following CPU limits are correct
(and have an identical effect):
◆ CPULIMIT = 400/hostA 600
◆ CPULIMIT = 400 600/hostA

The following CPU limit is incorrect:
CPULIMIT = 400/hostA 600/hostB

To specify resource usage limits for a job, see Running Jobs with Platform Lava.

Setting the CPU time and run time limits
To set the CPU time limit and run time limit for jobs in a platform-independent way,
Lava scales the limits by the CPU factor of the hosts involved. When a job is dispatched
to a host for execution, the limits are then normalized according to the CPU factor of
the execution host.
Whenever a normalized CPU time or run time is given, the actual time on the execution
host is the specified time multiplied by the CPU factor of the normalization host, then
divided by the CPU factor of the execution host.

Normalization
host

If no host or host model is given with the CPU time or run time, Lava selects a host as
follows (in order of preference):
◆ The default CPU time normalization host if defined at the queue level

(DEFAULT_HOST_SPEC in lsb.queues)
◆ The default CPU time normalization host if defined at the cluster level

(DEFAULT_HOST_SPEC in lsb.params)
◆ The submission host

Example CPULIMIT=10/hostA

If hostA has a CPU factor of 2, and hostB has a CPU factor of 1 (hostB is slower
than hostA), this specifies an actual time limit of 10 minutes on hostA, or on any other
host that has a CPU factor of 2. However, if hostB is the execution host, the actual time
limit on hostB is 20 minutes (10 * 2 / 1).
Inside Platform Lava

Chapter 3
Configuring Job Controls
Configuring Load Thresholds
You can configure load thresholds to schedule jobs in queues. Load thresholds specify
a load index value. There are two types of load thresholds:
◆ loadSched

The scheduling threshold which determines the load condition for dispatching
pending jobs.

◆ loadStop
The condition that determines when running jobs should be suspended.

Thresholds can be configured for each queue, for each host, or a combination of both.
The value of a load index may either increase or decrease with load, depending on the
meaning of the specific load index. Therefore, when comparing the host load conditions
with the threshold values, you need to use either greater than (>) or less than (<),
depending on the load index.
The queue definition (lsb.queues) can contain thresholds for 0 or more of the load
indices. Any load index that does not have a configured threshold has no effect on job
scheduling.

Syntax Each load index is configured on a separate line with the format:
load_index = loadSched/loadStop

Specify the name of the load index, for example, r1m for the 1-minute CPU run queue
length or pg for the paging rate. loadSched is the scheduling threshold for this load
index. loadStop is the suspending threshold. The loadSched condition must be
satisfied by a host before a job is dispatched to it and also before a job suspended on a
host can be resumed. If the loadStop condition is satisfied, a job is suspended.
The loadSched and loadStop thresholds permit the specification of conditions
using simple AND/OR logic. For example, the specification:
MEM=100/10
SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a
loadStop condition of mem < 10 || swap < 30.

Theory ◆ The r15s, r1m, and r15m CPU run queue length conditions are compared to the
effective queue length as reported by lsload -E, which is normalized for
multiprocessor hosts. Thresholds for these parameters should be set at appropriate
levels for single processor hosts.

◆ Configure load thresholds consistently across queues. If a low priority queue has
higher suspension thresholds than a high priority queue, then jobs in the higher
priority queue will be suspended before jobs in the low priority queue.

Configuring
suspending
conditions

The condition for suspending a job can be specified using the queue-level
STOP_COND parameter. It is defined by a resource requirement string. Only the
select section of the resource requirement string is considered when stopping a job.
All other sections are ignored.
This parameter provides similar but more flexible functionality for loadStop.
Inside Platform Lava 53

Configuring Load Thresholds

54
If loadStop thresholds have been specified, then a job will be suspended if either the
STOP_COND is TRUE or the loadStop thresholds are exceeded.

Example This queue will suspend a job based on the idle time for desktop machines and based on
availability of swap and memory on compute servers. Assume cs is a Boolean resource
defined in the lsf.shared file and configured in the lsf.cluster.lava file to
indicate that a host is a compute server:

Begin Queue
.
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]
.
End Queue
Inside Platform Lava

Chapter 3
Configuring Job Controls
Configuring Job Control Actions
After a job is started, it can be killed, suspended, or resumed by the system, a Lava user,
or Lava administrator. Lava job control actions cause the status of a job to change.
Several situations may require overriding or augmenting the default actions for job
control. For example:
◆ Notifying users when their jobs are suspended, resumed, or terminated
◆ An application holds resources (for example, licenses) that are not freed by

suspending the job. The administrator can set up an action to be performed that
causes the license to be released before the job is suspended and re-acquired when
the job is resumed.

◆ The administrator wants the job checkpointed before it is:
❖ Suspended when a run window closes
❖ Killed when the RUNLIMIT is reached

To override the default actions for the SUSPEND, RESUME, and TERMINATE job
controls, specify the JOB_CONTROLS parameter in the queue definition in
lsb.queues.

Configuring job controls
The JOB_CONTROLS parameter in lsb.queues has the following format:
Begin Queue
...
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

...
End Queue

When Lava needs to suspend, resume, or terminate a job, it invokes one of the following
actions as specified by SUSPEND, RESUME, and TERMINATE.

signal A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is
sent to the job.
To display a list of the symbolic names of the signals (without the SIG prefix) supported
on your system, use the kill -l command.

CHKPNT Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.
◆ If the SUSPEND action is CHKPNT, the job is checkpointed and then stopped.
◆ If the TERMINATE action is CHKPNT, then the job is checkpointed and killed.

command A /bin/sh command line. Do not quote the command line inside an action definition.
See the Platform Lava Man Pages for information about the job control parameters in
the lsb.queues file.
Inside Platform Lava 55

Configuring Job Control Actions

56
TERMINATE job actions
Use caution when configuring TERMINATE job actions that do more than just kill a
job. For example, resource usage limits that terminate jobs change the job state to
SSUSP while Lava waits for the job to end. If the job is not killed by the TERMINATE
action, it remains suspended indefinitely.

TERMINATE_WHEN parameter
In certain situations you may want to terminate the job instead of calling the default
SUSPEND action. For example, you may want to kill jobs if the run window of the
queue is closed. Use the TERMINATE_WHEN parameter in lsb.queues to
configure the queue to invoke the TERMINATE action instead of SUSPEND.
See the Platform Lava Man Pages for information about the TERMINATE_WHEN
parameter in the lsb.queues file.

Syntax TERMINATE_WHEN = WINDOW | LOAD

Example The following defines a night queue that will kill jobs if the run window closes.
Begin Queue
NAME = night
RUN_WINDOW = 20:00-08:00
TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[kill -KILL $LSB_JOBPIDS;

echo "job $LSB_JOBID killed by queue run window" |
mail $USER]

End Queue

Using a command as a job control action
The following apply to a job control action that is a command:
◆ The command line for the action is run with /bin/sh -c so you can use shell

features in the command.
◆ The command is run as the user of the job.
◆ All environment variables set for the job are also set for the command action.

The following additional environment variables are set:
❖ LSB_JOBPGIDS�a list of current process group IDs of the job
❖ LSB_JOBPIDS�a list of current process IDs of the job

◆ For the SUSPEND action command, the following environment variable is also set:
LSB_SUSP_REASONS�an integer representing a bitmap of suspending reasons
as defined in lsbatch.h.
The suspending reason can allow the command to take different actions based on
the reason for suspending the job.

◆ The standard input, output, and error of the command are redirected to the NULL
device, so you cannot tell directly whether the command runs correctly or not.
You should make sure the command line is correct. If you want to see the output
from the command line for testing purposes, redirect the output to a file inside the
command line.
Inside Platform Lava

Chapter 3
Configuring Job Controls
LSB_SIGSTOP parameter
Use LSB_SIGSTOP in lsf.conf to configure the SIGSTOP signal sent by the default
SUSPEND action.
If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that is
normally sent by the SUSPEND action is not sent. For example, if
LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE action
(SIGINT, SIGTERM, and SIGKILL) are sent 10 seconds apart.
See the Platform Lava Man Pages for information about LSB_SIGSTOP in the
lsf.conf file.

Avoiding signal and action deadlock
Do not configure a job control to contain the signal or command that is the same as the
action associated with that job control. This will cause a deadlock between the signal and
the action.
For example, the bkill command uses the TERMINATE action, so a deadlock results
when the TERMINATE action itself contains the bkill command.
Any of the following job control specifications will cause a deadlock:
◆ JOB_CONTROLS=TERMINATE[bkill]
◆ JOB_CONTROLS=TERMINATE[brequeue]
◆ JOB_CONTROLS=RESUME[bresume]
◆ JOB_CONTROLS=SUSPEND[bstop]
Inside Platform Lava 57

Configuring Job Priority by User

58
Configuring Job Priority by User
User-assigned job priority provides controls that allow users to order their jobs in a
queue. Job order is the first consideration to determine job eligibility for dispatch. Jobs
are still subject to all scheduling policies regardless of job priority. Jobs with the same
priority are ordered first come first served.
Job owners can change the priority of their own jobs. Lava and queue administrators can
change the priority of all jobs in a queue.
User-assigned job priority is enabled for all queues in your cluster.
To configure user-assigned job priority edit lsb.params and define
MAX_USER_PRIORITY. This configuration applies to all queues in your cluster.

Syntax MAX_USER_PRIORITY=max_priority

Where:
max_priority
Specifies the maximum priority a user can assign to a job. Valid values are positive
integers. Larger values represent higher priority; 1 is the lowest priority.
Lava administrators can assign priority beyond max_priority.

Example MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.
Inside Platform Lava

Chapter 3
Configuring Job Controls
Configuring Pre-Execution and Post-Execution
Commands

Pre- and post-execution commands can be configured at the job level or on a per-queue
basis.

Job-level
commands

Job-level pre-execution commands require no configuration. Use the bsub -E option
to specify an arbitrary command to run before the job starts.

Queue-level
commands

Use the PRE_EXEC and POST_EXEC keywords in the queue definition
(lsb.queues) to specify pre- and post-execution commands.
The following points should be considered when setting up pre- and post-execution
commands at the queue level:
◆ If the pre-execution command exits with a non-zero exit code, then it is considered

to have failed and the job is requeued to the head of the queue. This feature can be
used to implement customized scheduling by having the pre-execution command
fail if conditions for dispatching the job are not met.

◆ Other environment variables set for the job are also set for the pre- and post-
execution commands.

◆ When a job is dispatched from a queue that has a pre-execution command, Lava will
remember the post-execution command defined for the queue from which the job
is dispatched. If the job is later switched to another queue or the post-execution
command of the queue is changed, Lava will still run the original post-execution
command for this job.

◆ When the post-execution command is run, the environment variable,
LSB_JOBEXIT_STAT, is set to the exit status of the job. See the man page for the
wait(2) command for the format of this exit status.

◆ The post-execution command is also run if a job is requeued because the job�s
execution environment fails to be set up, or if the job exits with one of the queue�s
REQUEUE_EXIT_VALUES. (See �Configuring automatic job requeue� on
page 20.)
The LSB_JOBPEND environment variable is set if the job is requeued. If the job�s
execution environment could not be set up, LSB_JOBEXIT_STAT is set to 0.
See �Automatic Job Requeue� on page 329 for more information.

◆ If both queue and job-level pre-execution commands are specified, the job-level
pre-execution is run after the queue-level pre-execution command.

The entire contents of the configuration line of the pre- and post-execution commands
are run under /bin/sh -c, so shell features can be used in the command.
For example, the following is valid:
PRE_EXEC = /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
POST_EXEC = /usr/share/lsf/misc/testq_post | grep -v "Hey!"

The pre- and post-execution commands are run in /tmp.
Standard input and standard output and error are set to /dev/null. The output from
the pre- and post-execution commands can be explicitly redirected to a file for
debugging purposes.
Inside Platform Lava 59

Configuring Pre-Execution and Post-Execution Commands

60
The PATH environment variable is set to:
PATH='/bin /usr/bin /sbin /usr/sbin'

Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10
PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec
End Queue

LSB_PRE_POST_EXEC_USER parameter
By default, both the pre- and post-execution commands are run as the job submission
user. Use the LSB_PRE_POST_EXEC_USER parameter in lsf.sudoers to specify
a different user ID for queue-level pre- and post-execution commands.

Example For example, if the pre- or post-execution commands perform privileged operations
that require root permission, specify:
LSB_PRE_POST_EXEC_USER=root

See the Platform Lava Man Pages for information about the lsf.sudoers file.
Inside Platform Lava

Chapter 3
Configuring Job Controls
Configuring Job Starters for Queues
Lava administrators can define a job starter for an individual queue to create a specific
environment for jobs to run in. A queue-level job starter specifies an executable that
performs any necessary setup, and then runs the job when the setup is complete. The
JOB_STARTER parameter in lsb.queues specifies the command or script that is the
job starter for the queue.
Queue-level job starters have no effect on interactive jobs, unless the interactive job is
submitted to a queue as an interactive batch job.

Configuring a queue-level job starter
Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job starter
in the queue definition. All jobs submitted to this queue are run using the job starter.
The jobs are called by the specified job starter process rather than initiated by the batch
daemon process.
For example:
Begin Queue
.
JOB_STARTER = xterm -e
.
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter
The JOB_STARTER parameter in the queue definition (lsb.queues) has the
following format:
JOB_STARTER = starter [starter] [%USRCMD] [starter]

The string starter is the command or script that is used to start the job. It can be any
executable that can accept a job as an input argument. Optionally, additional strings can
be specified.
When starting a job, Lava runs the JOB_STARTER command, and passes the shell
script containing the job commands as the argument to the job starter. The job starter
is expected to do some processing and then run the shell script containing the job
commands. The command is run under /bin/sh -c and can contain any valid Bourne
shell syntax.

%USRCMD string The special string %USRCMD indicates the position of the job starter command in the job
command line. By default, the user commands run after the job starter, so the %USRCMD
string is not usually required. For example, these two job starters both give the same
results:
JOB_STARTER = /bin/csh -c

JOB_STARTER = /bin/csh -c %USRCMD

You can also enclose the %USRCMD string in quotes or follow it with additional
commands. For example:
JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue with this job starter:
Inside Platform Lava 61

Configuring Job Starters for Queues

62
$ bsub myjob arguments

the command that actually runs is:
$ /bin/csh -c "myjob arguments; sleep 10"

See the Platform Lava Man Pages for information about the JOB_STARTER parameter
in the lsb.queues file.
Inside Platform Lava

Index
Symbols
%USRCMD string in job starters 61
/etc/hosts file

example host entries 17
host naming 16
name lookup 16

/etc/syslog.conf file 24
/usr/include/sys/syslog.h file 24
~ (tilde)

not operator
host-based resources 38

A
administrators

cluster administrator description 12
displaying queue administrators 28
primary Lava administrator 12

ADMINISTRATORS parameter in lsf.cluster.lava 12
aliases

for resource names 43
using as host names 16

B
badmin command

hopen 14
hrestart 9
hshutdown 9
hstartup 9
mbdrestart 9, 11
qact 20
qclose 19
qinact 19
qopen 19

batch jobs
email about jobs

options 13
input and output 13

Berkeley Internet Name Domain (BIND)
host naming 16

BIND (Berkeley Internet Name Domain)
host naming 16

Boolean resources 30
bsub command

email job notification 13
input and output 13

built-in
resources 30

busy host status
lsload command 26
status load index 32

C
ceiling resource usage limit 51
ceiling run limit 51
closed host status

bhosts command 26, 27
closed_Adm condition, output of bhosts -l 26
closed_Busy condition, output of bhosts -l 26
closed_Full condition, output of bhosts -l 26
closed_LIM condition, output of bhosts -l 26
closed_Lock condition, output of bhosts -l 26
closed_Wind condition, output of bhosts -l 26
cluster administrators

description 12
viewing 25

cluster name 7
viewing 25

cluster-fork command
for running the same command on multiple hosts 9

clusters
configuration file quick reference 10
reconfiguring

commands 10
viewing information 25

commands
running under user ID 60
using in job control actions 56

configuration
adding and removing

queues 25
viewing

errors 11, 25
configuration files

reconfiguration quick reference 10
CPU

factors
static resource 34
time normalization 52

normalization 52
utilization, ut load index 33

cpuf static resource 34
custom resources

adding 36
configuring 36
description 36
resource types 30

D
Daemon Error Log 23
daemons

error logs 23
Inside Platform Lava 63

64

Index
restarting
mbatchd 10
sbatchd 9

shutting down
sbatchd 9

TCP service ports 15
ypbind 16

deadlock, avoiding signal and job action 57
default

LSF_LOGDIR 24
resource usage limits 51

DEFAULT_HOST_SPEC parameter
in lsb.queues 52

directories
log

permissions and ownership 23
disks

I/O rate 33
dispatch windows

hosts 14
DISPATCH_WINDOW

queues 21
Domain Name Service (DNS)

host naming 16
dynamic

resources 30

E
effective run queue length

built-in resources 32
ELIM (external LIM)

custom resources 39
debugging 41

email
job options 13
limiting the size of job email 13

error logs 24
Lava daemons 23
log directory

LSF_LOGDIR 24
log files 23
LSF_LOG_MASK parameter 24
managing log files 23

errors
viewing in reconfiguration 25

/etc/hosts file
host naming 16
name lookup 16

/etc/syslog.conf file 24
examples

/etc/hosts file entries 17
execution

priority 34
external

load indices, using ELIM 39

F
files

/etc/hosts
example host entries 17
host naming 16

name lookup 16
hosts

configuring 17
lsf.conf

configuring TCP service ports 15
daemon service ports 15

lsf.shared
adding a custom host types and models 15

resolv.conf 16
free memory 33

G
gethostbyname function (host naming) 16

H
hard resource limits

description 50
hard resource usage limits

example 51
hname static resource 34
hopen badmin command 14
host entries

examples 17
host model

select string 43
host model static resource 34
host models

adding custom names in lsf.shared 15
host name static resource 34
host names

/etc/hosts file 16
aliases 16
matching with Internet addresses 16
resolv.conf file 16
resolver function 16
using DNS 16

host selection 43
host status

busy 26, 32
closed 26, 27
index 32
lockU and lockW 26, 32
-ok 26, 32
ok 26, 32
unavail 26, 32
unreach 26
viewing 26

host type
resource requirements 42
select string 43

host type static resource 34
host types 7

adding custom names in lsf.shared 15
host-based resources 30
hosts

associating resources with 37
closing 14
controlling 14
dispatch windows 14
displaying 26
file 16
Inside Platform Lava

Index
multiple network interfaces 16
official name 16
opening 14
viewing

detailed information 27
history 27
hosts and host status 26
load by host 27, 47
load by resource 47
model and type information 27
shared resources 47
status of closed servers 27

hosts file
configuring 17
example host entries 17
host naming 16

hrestart badmin command 9
hshutdown badmin command 9
hstartup badmin command 9

I
idle time

built-in load index 33
interfaces, network 16
Internet addresses

matching with host names 16
Internet Domain Name Service (DNS)

host naming 16
io load index 33
it load index 33

J
job control actions

CHKPNT 55
terminating 56
using commands in 56

job email
bsub options 13
limiting size with LSB_MAILSIZE_LIMIT 13

job starters
queue-level

configuring 61
specifying command or script 61
user commands 61

JOB_CONTROLS parameter in lsb.queues 55
JOB_STARTER parameter in lsb.queues 61
job-level

pre-execution commands
configuring 59

resource requirements 42
jobs

CHKPNT 55
email notification

options 13
enabling rerun 21
submitting

resources 31
suspending at queue level 53

L
Lava version

viewing 25
LIM (Load Information Manager)

configuring number of restarts 41
configuring wait time 41
logging load information 41

lim.log.host_name file 23
limits

See resource allocation limits or resource usage
limits

load average 32
load indices

built-in
summary 31

io 33
it 33
mem 33
pg 33
r15m 32
r15s 32
r1m 32
swp 33
tmp 33
ut 33
viewing 25, 47

load levels
viewing by resource 47
viewing for cluster 25
viewing for hosts 27

load thresholds
configuring 53
description 53
queue level 53

lockU and lockW host status
lsload command 26
status load index 32

log files
directory permissions and ownership 23
lim.log.host_name 23
maintaining 23
managing 23
mbatchd.log.host_name 24
mbschd.log.host_name 24
pim.log.host_name 24
res.log.host_name 23
sbatchd.log.host_name 24

lost_and_found queue 19
lsadmin command

limlock 26
limunlock 26

lsb.params file
controlling lsb.events file rewrites 23

lsb.queues file
adding a queue 19
normalization host 52
resource usage limits 51

LSB_JOBEXIT_STAT environment variable 59
LSB_JOBPEND environment variable 59
LSB_JOBPGIDS environment variable 56
LSB_JOBPIDS environment variable 56
LSB_MAILSIZE_LIMIT parameter in lsf.conf 13
LSB_MBD_PORT parameter in lsf.conf 16
Inside Platform Lava 65

66

Index
LSB_SBD_PORT parameter in lsf.conf 16
LSB_SIGSTOP parameter in lsf.conf 57
LSB_SUSP_REASON environment variable 56
lsf.cluster.lava file

configuring cluster administrators 12
lsf.conf file

configuring TCP service ports 15
daemon service ports 15
limiting the size of job email 13
managing error logs 24

lsf.shared file
adding a custom host type and model 15

LSF_LIM_PORT parameter in lsf.conf 16
LSF_LOG_MASK parameter in lsf.conf 24
LSF_LOGDIR parameter in lsf.conf 24
LSF_RES_PORT parameter in lsf.conf 16
LSF_RSH parameter in lsf.conf

controlling daemons 9

M
mail

job options 13
limiting the size of job email 13

master host 7
viewing current 25

MAX_JOB_NUM parameter in lsb.params 23
maximum

resource usage limit 51
run limit 51

maxmem static resource 34
maxswp static resource 34
maxtmp static resource 34
mbatchd (master batch daemon)

restarting 10
mbatchd.log.host_name file 24
mbdrestart badmin command 9
mbschd.log.host_name file 24
mem load index 33
memory

available 33
model static resource 34
multi-homed hosts 16
multiprocessor hosts

configuring queue-level load thresholds 53

N
name lookup using /etc/hosts file 16
ncpus static resource

reported by LIM 34
ndisks static resource 34
network

interfaces 16
NIS (Network Information Service)

host name lookup in Lava 16
ypcat hosts.byname 16

normalization
CPU time limit 52
host 52
run time limit 52

normalized run queue length
description 33

not operator (~)
host-based resources 38

numerical resources 30

O
official host name 16
-ok host status

lsload command 26
status load index 32

ok host status
bhosts command 26
lsload command 26
status load index 32

operators
not (~)

host-based resources 38
resource requirments 44
selection strings 44

order string 44
ownership of log directory 23

P
paging rate

description 33
load index 33

paths
/etc/hosts file

host naming 16
name lookup 16

periodic tasks 23
permissions

log directory 23
pim.log.host_name file 24
ports

registering daemon services 15
post-execution commands

running under user ID 60
pre-execution commands

running under user ID 60

Q
qact badmin command 20
qclose badmin command 19
qinact badmin command 19
qopen badmin command 19
queue administrators

displaying 28
QUEUE_NAME parameter in lsb.queues 19
queue-level

job starter 61
pre- and post-execution commands

configuring 59
resource limits 51
resource requirements 42
run limits 52

queue-level resource limits, defaults 51
queues

adding and removing 25
Inside Platform Lava

Index
configuring
job control actions 55
suspending conditions 53

displaying queue administrators 28
lost_and_found 19
REQUEUE_EXIT_VALUES parameter 59
setting rerun level 21
specifying suspending conditions 53
viewing

available 28
detailed queue information 28
history 28
status 28

viewing administrator of 25

R
-R res_req command argument 43
r15m load index

built-in resources 32
r15s load index

built-in resources 32
r1m load index

built-in resources 32
remote jobs

execution priority 34
REQUEUE_EXIT_VALUES parameter in lsb.queues 20
RERUNNABLE parameter in lsb.queues 21
res.log.host_name file 23
resolv.conf file 16
resolver function 16
resource names

aliases 43
description 36

resource requirements
description 42
host type 42
operators 44
ordering hosts 43, 44
select string 43
selecting hosts 43

resource usage limits
ceiling 51
conflicting 50
default 51
hard 51
maximum 51
priority 50
soft 51

ResourceMap section in lsf.cluster.cluster_name 37
resources

adding 36
adding custom 36
and job submission 31
associating with hosts 37
Boolean 30
built-in 31
configuring custom 36
custom 36
shared 31, 47
types 30
viewing

available 25, 46
host load 47
shared 25

rexpri static resource 34
rsh command

lsfrestart 9
run limits

ceiling 51
configuring 50
maximum 51

run queue
effective 32
normalized 33

run time
normalization 52

RUN_WINDOW
queues 22

S
sample /etc/hosts file entries 17
sbatchd (slave batch daemon)

restarting 9
shutting down 9

sbatchd.log.host_name file 24
scheduling

threshold
queue-level resource requirements 53

selection string 43
selection strings

operators 44
server hosts, viewing detailed information 27
server status closed 27
service ports (TCP and UDP)

registering 15
shared resources

description 31
viewing 47

signals
avoiding job action deadlock 57
configuring SIGSTOP 57

SIGSTOP signal
configuring 57

soft resource limits
description 50
example 51

static resources
See also individual resource names
description 33

STATUS
bhosts 26

status
closed in bhosts 27
load index 32
viewing

hosts 26
queues 28

string resources 30
Sun Network Information Service/Yellow Pages. See NIS
suspending conditions

configuring 53
Inside Platform Lava 67

68

Index
swap space
load index 33

swp load index
description 33

syslog.h file 24

T
TCP service port numbers

registering for Lava 15
TERMINATE_WHEN parameter in lsb.queues

changing default SUSPEND action 56
tilde (~)

not operator
host-based resources 38

time normalization
CPU factors 52

tmp
load index

description 33
/tmp directory

default LSF_LOGDIR 24
type static resource 34

U
UDP service port numbers

registering for Lava 15
unavail host status

bhosts command 26
lsload command 26
status load index

status load index 32
unreach host status

bhosts command 26
/usr/include/sys/syslog.h file 24
%USRCMD string in job starters 61
ut load index

built-in resource 33

V
viewing

configuration errors 11, 25
virtual memory

load index 33
vmstat 33

Y
ypbind daemon 16
ypcat hosts.byname 16
Inside Platform Lava

	Inside Platform Lava™
	Contents
	Inside Your Cluster
	Cluster Characteristics
	The Lava master host daemons
	Default Lava directories
	Four important Lava configuration files
	Cluster name
	Lava hosts

	Restarting and Reconfiguring Lava Daemons
	Restarting the whole cluster
	Restarting the master host
	Reconfiguring the master host
	Controlling daemons
	Reconfiguring the cluster
	Reconfiguring the cluster with lsadmin and badmin
	Reconfiguring the cluster by restarting mbatchd

	Cluster Administrators
	Mail Notification
	Managing Users, Hosts, and Queues
	Making your cluster available to users
	�Controlling hosts
	Adding host types and host models to lsf.shared
	Registering service ports
	Matching host names and addresses
	Controlling queues
	Configuring automatic job requeue
	Configuring exclusive job requeue
	Configuring automatic job rerun for a queue
	Controlling when jobs run

	Error and Event Logging
	System directories and log files
	Managing error logs

	Monitoring Your Cluster
	Viewing cluster information
	Viewing host information
	Viewing queue information

	Working with Resources and Resource Requirements
	Resource Classifications
	How resources are classified
	Boolean resources
	Load indices
	Load indices collected by LIM
	Static resources
	CPU factor
	Shared resources

	Configuring Your Own Resources
	Adding new resources to your cluster
	Configuring the lsf.shared resource section
	Configuring the lsf.cluster.lava resourcemap section

	External Load Indices and ELIM
	How Lava uses ELIM for external resource collection
	Writing an ELIM
	Debugging an ELIM

	Configuring Resource Requirements
	Resource Requirement Strings
	How queue and job resource requirements are resolved
	Resource requirement string sections
	Selection string
	Specifying shared resources with the keyword “defined”
	Order string

	Monitoring Resources
	Viewing host load by resource
	Viewing shared resources for hosts
	Viewing load on a host
	Viewing information about load indices
	Viewing resource requirements for a queue
	Viewing resource requirements for a job

	Configuring Job Controls
	Configuring Resource Usage Limits
	Summary of resource usage limits
	How resource usage limits are prioritized
	Incorrect resource usage limits
	Specifying resource usage limits
	Setting the CPU time and run time limits

	Configuring Load Thresholds
	Configuring Job Control Actions
	Configuring job controls
	TERMINATE job actions
	TERMINATE_WHEN parameter
	Using a command as a job control action
	LSB_SIGSTOP parameter
	Avoiding signal and action deadlock

	Configuring Job Priority by User
	Configuring Pre-Execution and Post-Execution Commands
	Configuring Job Starters for Queues
	Configuring a queue-level job starter
	JOB_STARTER parameter

	Index

