

RepliCator: Optimization Software Suite for Clusters & Grids

February 2007

- ☆ Through Intelligent Data Transfer Management
- ➣ For enhanced ROI and ease-of-use
- \sim By providing a full set of tools for:
 - Automated coordination of Data Movement
 - \propto Simplified movement of Data between multiple sources
 - \propto User transparency for local and remote Data transfers
 - \sim Enhanced performance of Data transfers
 - \propto Support of Data-driven scheduling and processing

What RepliCator Does : *Cluster and Grid Optimization*

- 🔀 Data Transfer
- ∞ Data Activated Processing
- ✓ Data Aware Scheduling
- > Data Synchronization
- ✓ Job Submission Control
- Process Scheduling Control
- \sim Information Feedback

We automate and optimize Cluster and Grid data transfers without expensive add-ons

RepliCator UI & API : Data Transfer Optimizer Module

- Seamlessly transfer data from remote
 locations to central storage or scratch
 storage facilities
- Seamlessly transfer data from central storage to scratch storage

replic-qsub -F nt job.sh

RepliCator MLP : Job Dispatch Optimizer Module

S

LUDU

Control job dispatch based on Data

locality (Data-Activated Processing)

- \sim Control job dispatch based on node state
- \sim Control job dispatch based on user

determined conditions

- \sim Transparent to users
- \sim Interacts with workload managers

DATA {TRANSFER file ... ; }
EXECUTE {DO program ... ; }
CLEANUP {PURGEALL; }

- \sim Automatic transfer of data back to
 - \propto scratch storage
 - 🔀 central storage
 - \times remote location storage
 - \sim peer node local disk
- On-the-fly transfer of data while
 processing continues (eg. checkpointing)
- \sim External triggering of data transfers

RepliCator : Parallel File Optimizer

MBy/s

Cache data on multiple compute nodes simultaneously

✓ Scratch Storage

S

LUDU

- ☆ Central Storage
- × Remote Locations

Aggregate Network Bandwidth

Replicator Scalability

BLAST-NT Parallel File Serving Benchmark (out of memory)

S

LUDU

W

2 Single-Core AMD cpu nodes 3.7 GB memory nodes 550 MB/s Panasas In core / out of core, Small / large cluster, Fast / slow network, NFS / Cluster FS, Single / multi core, RepliCator *is* faster. *Way faster.*

11

Lustre

RepliCator

USER SYS WAITIO

12

RepliCator Suite Interoperability

RepliCator Ports :	SGE	PBS	LSF	Torque
Linux 32 bits	Now	Now	Q1	Now
Linux 64 bits	Now	Now	Q1	Now
Solaris 64 bits	Now	Now	Q1	Now
Mac Os X	Now	Now	Q2	Q2
Windows 32 bits	Now	Now	Q2	Q1

Nearly any mix of OS, Chipset, WLM, network, file system (NFS, Lustre, Panasas, Ibrix, ...).

S

• LUDU

No modifications to your hardware, file system, networking infrastructure

RepliCator Optimization Capabilities

- \sim Automation : automate transfer to scratch, submit job, cleanup and retrieve results
- **FT Resilient Transfer** : able to survive and recover transfer interruptions (ie RCP, FTP can't)
- \sim NetDiag : network diagnostic tools for storm, suppression, duplication, BW, etc. testing
- ➤ Parallel File Serving Optimizer : 1-to-N nodes stage in
- ✓ ART Optimizer : stage out (NFS-CFS, peer, remote; command line and API)
- × ART-trigger : on-the-fly external trigger mechanism
- Meta Language Processor : event driven mechanism at nodes; WLM driver at server
- \times FTP : remote operation & interface to portals

LUDUS

- VM Provisioning Optimizer : enable asynchronous virtualware deployment in large clusters
- SchedOptimizer : multi-core / CPU RT scheduling optimization (job arrays)

С при

S

Keeping Costs Down, Enhancing ROI

- \propto Clusters are commodity, what about infrastructure?
- ∞ RepliCator Grid Optimizer boosts infrastructure ROI:
 - \propto Increased throughput
 - \propto Reduced job turnaround time
 - \propto Reduced costs of infrastructure
 - \times Ease of use
 - \propto Transparent integration, management
 - \propto Straightforward licensing

Testimonials

\times Bielefeld University/CeBiTec

"Setting up the RepliCator solution was really easy. No kernel-tweaking or similar changes were involved. eXludus was very helpful, and we set up a first running replication in a matter of hours, and a good, working software-integration in less than a week. ... the effective network bandwidth for the replicated files is now almost independent of the number of nodes. ... there is really lots of headroom for future cluster extensions."

- Ralf Nolte, System admin., CeBiTec BRF

UNIVERSITY OF

\times York University

S

LUDU

"The initial experiments conducted by the University of York and eXludus showed that **even for a cluster with as few as 10 nodes, RepliCator greatly improved system utilization** by accelerating data flow 4.4 times in comparison with the widely used NFS file system,"

- Aaron Turner, White Rose Grid manager at the University of York.

\propto Cambridge University

- Paul Calleja, Director HPCF

Top Ten Bio-It Trends for 2007 Bio-It World, Dec06 - Jan07

Trend #2. "Data-aware" Computing :

S

LUDU

Companies such as Exludus can layer file-and-data locational awareness onto common distributed resources managements systems such as Platform LSF and Sun Grid Engine. The result is that scientific workflows automatically migrate towards systems where the required datasets already reside or can be quickly obtained. For environments with I/O heavy scientific computing requirements the throughput *performance gains can be impressive*.

- The BioTeam

Biold World

Offices:

HQ: Montréal, Québec, Canada - Benoît Marchand, development & support team

Americas Sales: Cupertino, California, USA - Stephen Perrenod

EMEA Sales: Kent, United Kingdom - Philip Bull

first.last@exludus.com info@exludus.com http://www.exludus.com

OptimaNumerics

The Big Picture: Grid Optimizer

- RepliCator adds increased coherency, enhanced control and accelerated performance to the Data Center
 - ✓ Helps to implement "Next Generation Data Center"
 - $\, \times \,$ Allows realization of Grid 2.0 practically, including support of SLAs

 \propto (Grid 2.0 = Grid 1.0 + storage, network, data management)

☆ RepliCator supports:

S

LUDU

- × Multiple levels of Data hierarchy
- \propto Access to Data at remote sites
- ∞ Small, medium or large clusters
- \propto Scaling in an economical fashion

